Problem G. Beautiful Automata

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Oleksandr is a fan of strings. His favourite data structure is suffix automaton.

Consider a string s of lowercase English letters. The suffix automaton of s is the smallest (having the smallest number of vertices) directed acyclic graph G with a letter l(e) written on each edge e and a fixed starting vertex v_0 such that

 $\{w \mid w \text{ is a substring of } s\} = \{l(e_1)l(e_2)...l(e_k) \mid (e_1, e_2, ..., e_k) \text{ is a path in } G \text{ starting at } v_0\}.$

Oleksandr likes suffix automata more than any other graphs. He calls a directed acyclic graph G s-beautiful if it is possible to write a lowercase English letter on each edge and choose a starting vertex v_0 so that G will become a suffix automaton of the string s. Oleksandr likes lexicographically small strings, so please help him find for a given graph G the lexicographically smallest string s such that G is s-beautiful.

Input

The first line contains two integers n and m $(1 \le n \le 2000, 1 \le m \le 3000)$, the number of vertices and the number of edges in G respectively. Each of the next m lines contains two integers v and u $(1 \le v, u \le n, v \ne u)$, denoting a directed edge from v to u. It is guaranteed that G is acyclic.

Output

Output a single line containing the lexicographically smallest string s consisting of lowercase English letters such that G is s-beautiful. If such string does not exist, output -1.

standard input	standard output
2 1	a
1 2	
4 5	aab
1 2	
2 3	
1 4	
2 4	
3 4	
5 5	abab
1 2	
1 3	
2 3	
3 4	
4 5	
4 5	-1
1 2	
1 3	
1 4	
2 3	
4 3	

Examples

Explanations

Suffix automata for the first three sample tests are shown below:

