
Uni

Cup

The 1st Universal Cup
Stage 17: Guangzhou, May 20-21, 2023

Problem B. Disjoint Set Union
Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 1024 megabytes

Recently, Little Cyan Fish has been learning about the Disjoint Set Union (DSU) data structure. It is
a powerful data structure that allows you to add edges to a graph and test whether two vertices of the
graph are connected.

The DSU maintains a rooted forest structure consisting of n vertices. Each vertex x (1 ≤ x ≤ n) has
a unique parent f [x]. If x = f [x], then x is the root of its subtree. Initially, each vertex forms a single
rooted tree. That is, f [x] = x for all 1 ≤ x ≤ n.

The basic interface of DSU consists of these two operations:

• find x: returns the root of the tree where x is located.

• unite x y: let x′ ← find(x) and y′ ← find(y). If x′ = y′, do nothing. Otherwise, modify the parent
of x′ to y′.

To speed up the unite operation, Little Cyan Fish uses an optimization called Path Compression:

• If we call find(x) for some vertex x, we set the parent of each vertex from x to the root directly to
the root.

The following pseudocode describes the details of the DSU.

Algorithm 1 An implementation of DSU with Path Compression
1: procedure find(f , x)
2: if x = f [x] then
3: return x
4: end if
5: f [x]← find(f, f [x])
6: return f [x]
7: end procedure
8: procedure unite(f, x, y)
9: x← find(f, x)

10: y ← find(f, y)
11: if x ̸= y then
12: f [x]← y
13: end if
14: end procedure

Little Cyan Fish loves the DSU very much, so he would like to play with it. He got an array f of length n,
where f [i] = i in the beginning. Then, Little Cyan Fish did the following operations many times (possibly
zero):

• Choose an integer 1 ≤ x ≤ n, apply find(x).

• Choose two integers 1 ≤ x ≤ n and 1 ≤ y ≤ n, apply unite(x, y).

He will give you the array f after all his operations. However, you would like to transform the array f into
another given array g by using the DSU operations described above. You are wondering if it is possible
to apply any additional operations so that f [i] = g[i] for all 1 ≤ i ≤ n.

Page 3 of 25



Uni

Cup

The 1st Universal Cup
Stage 17: Guangzhou, May 20-21, 2023

Input
There are multiple test cases. The first line contains one integer T (1 ≤ T ≤ 105), representing the number
of test cases.

For each test case, the first line contains one positive integer n (3 ≤ n ≤ 1 000).

The next line contains n integers f1, f2, . . . , fn denoting the array f after Little Cyan Fish’s operations.
It is guaranteed that the array f can be generated by using the operation above.

The following line contains n integers g1, g2, . . . , gn denoting the array g that you would like to transform
the array f into.

It is guaranteed that the sum of n2 over all test cases does not exceed 5× 106.

Output
For each test case, if it is impossible to transform the array f into the array g, print a single line NO.

Otherwise, the first line of the output should contain a single word YES.

The next line of the output should contain an integer m (0 ≤ m ≤ 2 · n2), indicating the number of
operations you used.

The next m lines describe the operations you used. Each operation is described in the following format:

• 1 x: Call find(x).

• 2 x y: Call unite(x, y).

If there are multiple solutions, you may print any of them. It can be proved that if any solution exists,
then there’s a plan consisting of no more than 2 · n2 operations.

Example
standard input standard output

5

3

1 2 3

2 2 3

4

1 2 3 3

1 1 1 2

5

1 2 3 4 5

2 3 4 5 5

5

1 1 1 1 1

1 2 3 4 5

6

1 2 2 4 5 6

1 1 5 1 4 2

YES

1

2 1 2

YES

4

2 3 2

1 4

2 2 1

1 3

YES

4

2 1 2

2 1 3

2 2 4

2 3 5

NO

YES

7

2 6 2

2 2 5

1 3

2 2 4

1 2

2 2 1

1 2

Page 4 of 25


