Problem B. Disjoint Set Union

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
1024 megabytes

Recently, Little Cyan Fish has been learning about the Disjoint Set Union (DSU) data structure. It is a powerful data structure that allows you to add edges to a graph and test whether two vertices of the graph are connected.
The DSU maintains a rooted forest structure consisting of n vertices. Each vertex $x(1 \leq x \leq n)$ has a unique parent $f[x]$. If $x=f[x]$, then x is the root of its subtree. Initially, each vertex forms a single rooted tree. That is, $f[x]=x$ for all $1 \leq x \leq n$.
The basic interface of DSU consists of these two operations:

- find x : returns the root of the tree where x is located.
- unite $x y$: let $x^{\prime} \leftarrow \operatorname{find}(x)$ and $y^{\prime} \leftarrow \operatorname{find}(y)$. If $x^{\prime}=y^{\prime}$, do nothing. Otherwise, modify the parent of x^{\prime} to y^{\prime}.

To speed up the unite operation, Little Cyan Fish uses an optimization called Path Compression:

- If we call find (x) for some vertex x, we set the parent of each vertex from x to the root directly to the root.

The following pseudocode describes the details of the DSU.

```
Algorithm 1 An implementation of DSU with Path Compression
    procedure \(\operatorname{FIND}(f, x)\)
        if \(x=f[x]\) then
            return \(x\)
        end if
        \(f[x] \leftarrow \operatorname{find}(f, f[x])\)
        return \(f[x]\)
    end procedure
    procedure \(\operatorname{UNITE}(f, x, y)\)
        \(x \leftarrow \operatorname{FiND}(f, x)\)
        \(y \leftarrow \operatorname{FIND}(f, y)\)
        if \(x \neq y\) then
            \(f[x] \leftarrow y\)
        end if
    end procedure
```

Little Cyan Fish loves the DSU very much, so he would like to play with it. He got an array f of length n, where $f[i]=i$ in the beginning. Then, Little Cyan Fish did the following operations many times (possibly zero):

- Choose an integer $1 \leq x \leq n$, apply $\operatorname{FIND}(x)$.
- Choose two integers $1 \leq x \leq n$ and $1 \leq y \leq n$, apply $\operatorname{UNITE}(x, y)$.

He will give you the array f after all his operations. However, you would like to transform the array f into another given array g by using the DSU operations described above. You are wondering if it is possible to apply any additional operations so that $f[i]=g[i]$ for all $1 \leq i \leq n$.

Input

There are multiple test cases. The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, representing the number of test cases.
For each test case, the first line contains one positive integer $n(3 \leq n \leq 1000)$.
The next line contains n integers $f_{1}, f_{2}, \ldots, f_{n}$ denoting the array f after Little Cyan Fish's operations. It is guaranteed that the array f can be generated by using the operation above.
The following line contains n integers $g_{1}, g_{2}, \ldots, g_{n}$ denoting the array g that you would like to transform the array f into.
It is guaranteed that the sum of n^{2} over all test cases does not exceed 5×10^{6}.

Output

For each test case, if it is impossible to transform the array f into the array g, print a single line NO.
Otherwise, the first line of the output should contain a single word YES.
The next line of the output should contain an integer $m\left(0 \leq m \leq 2 \cdot n^{2}\right)$, indicating the number of operations you used.
The next m lines describe the operations you used. Each operation is described in the following format:

- $1 x$: Call $\operatorname{Find}(x)$.
- $2 x y$: $\operatorname{Call} \operatorname{Unite}(x, y)$.

If there are multiple solutions, you may print any of them. It can be proved that if any solution exists, then there's a plan consisting of no more than $2 \cdot n^{2}$ operations.

Example

standard input	standard output
5	YES
3	1
123	212
223	YES
4	4
1233	232
1112	14
5	221
12345	13
23455	YES
5	4
11111	212
12345	213
6	224
122456	235
115142	NO
	YES
	7
	262
	225
	13
	224
	12
	221
	12

