Problem C. DFS Order 3

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Little Cyan Fish has a tree with n vertices. Each vertex is labeled from 1 to n. Now he wants to start a depth-first search at each vertex x. The DFS order is the order of nodes visited during the depth-first search. A vertex appears in the j-th $(1 \leq j \leq n)$ position in this order means it is visited after $j-1$ other vertex. Because sons of a node can be iterated in arbitrary order, multiple possible depth-first orders exist.
The following pseudocode describes the way to generate a DFS order. The function Generate (x) returns a DFS order starting at vertex x :

```
Algorithm 2 An implementation of depth-first search
    procedure DFS(vertex \(x\) )
        Append \(x\) to the end of dfs_order
        for each son \(y\) of \(x\) do \(\quad \triangleright\) Sons can be iterated in arbitrary order.
                \(\operatorname{DFS}(y) \quad \triangleright\) The order might be different in each iteration.
            end for
    end procedure
    procedure GENERATE \((x)\)
        Root the tree at vertex \(x\)
        Let dfs_order be a global variable
        dfs_order \(\leftarrow\) empty list
        DFS ( \(x\) )
        return dfs_order
    end procedure
```

Let D_{i} be the returned array after calling $\operatorname{Generate}(x)$. Little Cyan Fish wrote down all the n sequences $D_{1}, D_{2}, \cdots, D_{n}$. Years later, he can no longer remember the structure of the original tree. Little Cyan Fish is wondering how to recover the original tree by using these n sequences. Please help him!

Input

There are multiple test cases. The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, representing the number of test cases.
For each test case, the first line contains one positive integer $n(1 \leq n \leq 1000)$, indicating the number of vertices of the tree.

The next n lines describe the DFS order of the original tree. In the i-th line of htese lines contains n integers $D_{i, 1}, D_{i, 2}, \cdots, D_{i, n}$, describes a DFS order. It is guaranteed that $D_{i, 1}=i$ and D_{i} is a valid DFS order of the original tree.
It is guaranteed that the sum of n^{2} over all test cases does not exceed 2×10^{6}.

Output

For each test case, you need to output $n-1$ lines, that describes the tree you recovered. In each of the $n-1$ lines, you need to output two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$, which means there's an edge between vertex u_{i} and vertex v_{i}. If there are multiple possible solutions, you may print any of them. It is guaranteed that at least one solution exists.

Example

standard input	standard output
4	12
2	12
12	23
21	12
3	23
123	24
213	12
321	13
4	24
1234	35
2134	
3241	
4213	
5	
12435	
24135	
35124	
42135	
53124	

