Uni Cup

Problem E. CCPC String

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

To prepare a task for the CCPC Final, Little Cyan Fish is studying basic string theory. Today, Little Cyan Fish has learned the concept of the CCPC string. A string s is called a CCPC string if and only if there exists a positive integer $t \ge 1$, such that $s = c^{2t}pc^t$.

Here, c^k represents the string consisting of the character c repeated k times, and uv denotes the string obtained by concatenating strings u and v. For example, ccpc, cccpcc, and cccccpccc are CCPC strings, but p, cpc, ccpcc, ccppc, and cccpc are not.

Now, Little Cyan Fish has a string S consisting of c, p, and question marks (?). He wants to calculate the number of pairs of integers (l, r) that satisfy the following conditions:

- $1 \le l \le r \le |S|$
- for the string $T = S[l \cdots r]$, it is possible to replace the question marks (?) to c or p, so that the string is an CCPC string.

Input

There are multiple test cases. The first line contains one integer T ($1 \le T \le 10^5$), representing the number of test cases.

For each test case, the first line contains a single string S. The string S consists only of the English letters c, p, and the question mark (?).

It is guaranteed that the sum of |S| over all test cases does not exceed 10^6 .

Output

For each test case, output a single line consists a single integer, indicating the answer.

Example

standard input	standard output	
5	1	
?cpc	1	
ccp??	4	
???c???	5	
?c???cp??	14	
?c?????cccp????		

Note

In the first example, all valid pairs of (l, r) are as follows.

l =	r =	$S[l\cdots r]$	Replaced String
1	4	?срс	ссрс

In the second example, all valid pairs of (l, r) are as follows.

l =	r =	$S[l\cdots r]$	Replaced String
1	4	ccp?	ссрс

In the third example, all valid pairs of (l, r) are as follows.

l =	r =	$S[l\cdots r]$	Replaced String
1	4	???c	ссрс
3	6	?c??	ссрс
4	7	c???	ссрс
1	7	???c???	ссссрсс

In the fourth example, all valid pairs of (l, r) are as follows.

l =	r =	$S[l\cdots r]$	Replaced String
1	4	?c??	ссрс
2	5	c???	ссрс
3	6	???c	ссрс
5	8	?cp?	ссрс
3	9	???cp??	ссссрсс

In the fifth example, all valid pairs of (l, r) are as follows.

l =	r =	$S[l\cdots r]$	Replaced String
1	4	?c??	ссрс
2	5	c???	ссрс
3	6	????	ссрс
4	7	????	ссрс
5	8	???c	ссрс
9	12	ccp?	ссрс
12	15	????	ссрс
1	7	?c?????	ссссрсс
2	8	c?????c	ссссрсс
3	9	????cc	ссссрсс
7	13	?cccp??	ccccpcc
1	10	?c?????ccc	сссссрссс
5	14	???cccp???	cccccpccc
3	15	?????cccp????	ccccccccpcccc