Problem E. CCPC String

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

To prepare a task for the CCPC Final, Little Cyan Fish is studying basic string theory. Today, Little Cyan Fish has learned the concept of the CCPC string. A string s is called a CCPC string if and only if there exists a positive integer $t \geq 1$, such that $s=\mathrm{c}^{2 t} \mathrm{pc} c^{t}$.
Here, c^{k} represents the string consisting of the character c repeated k times, and $u v$ denotes the string obtained by concatenating strings u and v. For example, ccpc, ccccpcc, and ccccccpccc are CCPC strings, but $\mathrm{p}, \mathrm{cpc}, \mathrm{ccpcc}, ~ с c p p c$, and $c c c p c$ are not.
Now, Little Cyan Fish has a string S consisting of c, p, and question marks (?). He wants to calculate the number of pairs of integers (l, r) that satisfy the following conditions:

- $1 \leq l \leq r \leq|S|$
- for the string $T=S[l \cdots r]$, it is possible to replace the question marks (?) to c or p , so that the string is an CCPC string.

Input

There are multiple test cases. The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, representing the number of test cases.
For each test case, the first line contains a single string S. The string S consists only of the English letters c, p, and the question mark (?).
It is guaranteed that the sum of $|S|$ over all test cases does not exceed 10^{6}.

Output

For each test case, output a single line consists a single integer, indicating the answer.

Example

standard input	standard output
5	1
?cpc	1
ccp??	4
???c???	5
?c???cp??	14
?c?????cccp????	

Note

In the first example, all valid pairs of (l, r) are as follows.

$l=$	$r=$	$S[l \cdots r]$	Replaced String
1	4	$? \mathrm{cpc}$	ccpc

In the second example, all valid pairs of (l, r) are as follows.

$l=$	$r=$	$S[l \cdots r]$	Replaced String
1	4	ccp?	ccpc

In the third example, all valid pairs of (l, r) are as follows.

$l=$	$r=$	$S[l \cdots r]$	Replaced String
1	4	???c	ccpc
3	6	$? c ? ?$	ccpc
4	7	c???	ccpc
1	7	???c???	ccccpcc

In the fourth example, all valid pairs of (l, r) are as follows.

$l=$	$r=$	$S[l \cdots r]$	Replaced String
1	4	?c??	ссрс
2	5	c???	ссрс
3	6	???c	ссрс
5	8	?cp?	ссрс
3	9	??? ср??	ccccpoc

In the fifth example, all valid pairs of (l, r) are as follows.

$l=$	$r=$	$S[l \cdots r]$	Replaced String
1	4	$? c ? ?$	ccpc
2	5	c???	ccpc
3	6	$? ? ? ?$	ccpc
4	7	????	ccpc
5	8	$? ? ? c$	ccpc
9	12	ccp?	ccpc
12	15	$? ? ? ? ?$	ccpc
1	7	?c?????	ccccpcc
2	8	c?????c	ccccpcc
3	9	?????cc	ccccpcc
7	13	?cccp??	ccccpcc
1	10	?c?????ccc	ccccccpccc
5	14	???cccp???	ccccccpccc
3	15	?????cccp????	ccccccccpcccc

