Problem F. Chase Game 3

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

After becoming the Chinese Elephant Chess Champion, Teacher \mathcal{D} has designed a new two-player game called Tie-Tie.
In the Tie-Tie Game, there are n vertices numbered from 1 to n. Two bidirectional chains L_{1} and L_{2} connect these n vertices. The i-th edge of L_{1} connects node i and $i+1(1 \leq i \leq n-1)$. The i-th edge of L_{2} connects node p_{i} and $p_{i+1}(1 \leq i \leq n-1)$.
The two players in the game are called Little Cyan Fish and Xiao Qing Yu. Before the game starts, Little Cyan Fish must choose a starting node A, and Xiao Qing Yu must choose a starting node B. After that, they will take turns acting, with Little Cyan Fish going first:

- Little Cyan Fish can choose to stay in place or move to another vertex along an edge of L_{1};
- Xiao Qing Yu can choose to stay in place or move to another vertex along an edge of L_{2}.

If at some point Little Cyan Fish and Xiao Qing Yu are at the same vertex, then a tie-tie will occur. Xiao Qing Yu loves tie-ties very much, but Little Cyan Fish does not. Therefore, Xiao Qing Yu will try to make the tie-tie happen, and Little Cyan Fish will try to prevent it. Both players are smart enough to adopt the optimal strategy for the game.
Teacher \mathcal{D} is also a fan of Tie-Tie. If no matter which initial nodes the two players choose, Xiao Qing Yu has a strategy to achieve a tie-tie with Little Cyan Fish within a finite number of steps, then Teacher \mathcal{D} will be happy. Please help Teacher \mathcal{D} determine whether a tie-tie will occur in all possible initial states.

Input

There are multiple test cases. The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, representing the number of test cases.
For each test case, the first line contains one positive integer $n\left(2 \leq n \leq 4 \times 10^{5}\right)$.
The next line contains n integers $p_{1}, p_{2}, \cdots, p_{n}$. It is guaranteed that p is a permutation of $[1, n]$.
It is guaranteed that the sum of n over all test cases does not exceed 4×10^{5}.

Output

For each test case, if no matter which initial nodes the two players choose, Xiao Qing Yu has a strategy to achieve a tie-tie with Little Cyan Fish within a finite number of steps, output a single line consists a single word Yes. Otherwise, output a single line consists of a single word No.

Example

\quad standard input					standard output
5				Yes	
2					Yes
1	2				No
3				No	
2	3	1			Yes
4					
1	4	3	2		
5					
1	5	2	3	4	
6					
1	2	3	4	6	

