Problem K. Balancing Sequences

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
1024 megabytes

After traveling to Gensokyo, Little Cyan Fish obtained two sequences a_{1} and a_{2}. Each sequence contains n integers ranging from 1 to $2 n$. All of the $2 n$ integers are pairwise distinct.
He wants to transform a_{1}, a_{2} into b_{1}, b_{2}. Unfortunately, the sequences have a self-balancing system, so the only operation he can perform is to choose four integers $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ and swap the elements $a_{x_{1}, x_{2}}$ and $a_{y_{1}, y_{2}}$. To protect the self-balancing system, these chosen integers must satisfy:

- $x_{1}, y_{1} \in[1,2]$ and $x_{2}, y_{2} \in[1, n]$.
- $x_{2} \neq y_{2}$.
- $a_{x_{1}, x_{2}}>a_{3-x_{1}, x_{2}}$.
- $a_{y_{1}, y_{2}}>a_{3-y_{1}, y_{2}}$.

Little Cyan Fish would like to know whether he can transform a_{1}, a_{2} into b_{1}, b_{2}, so he asked you for help. If it is possible, you need to provide a plan to guide him.

Input

There are multiple test cases. The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, representing the number of test cases.
For each test case, the first line contains one integer $n\left(2 \leq n \leq 2 \times 10^{3}\right)$, indicating the size of a_{1}, a_{2}, b_{1}, and b_{2}.
The next line contains n elements, describing $a_{1}\left(1 \leq a_{1, i} \leq 2 n\right)$.
The next line contains n elements, describing $a_{2}\left(1 \leq a_{2, i} \leq 2 n\right)$. All the $2 n$ integers in the sequences a_{1} and a_{2} are pairwise distinct.
The next line contains n elements, describing $b_{1}\left(1 \leq b_{1, i} \leq 2 n\right)$.
The next line contains n elements, describing $b_{2}\left(1 \leq b_{2, i} \leq 2 n\right)$. All the $2 n$ integers in the sequences b_{1} and b_{2} are pairwise distinct.
It is guaranteed that the sum of n^{2} over all test cases does not exceed 4×10^{6}.

Output

If it's not possible to transform the arrays a_{1} and a_{2} into b_{1} and b_{2}, output a single line consists a single integer -1 .
Otherwise, output a single integer $s(s \in[0,5 n])$ representing the number of steps required to transform a_{1} and a_{2} into b_{1} and b_{2}.
In the next s lines, for each line, output four numbers $x_{1}, x_{2}, y_{1}, y_{2}\left(1 \leq x_{1}, y_{1} \leq 2,1 \leq x_{2}, y_{2} \leq n\right)$, indicating that you should swap $a_{x_{1}, x_{2}}$ and $a_{y_{1}, y_{2}}$ in this step.
It can be proven that if the transformation is possible, then it can be completed within $5 n$ steps.

Example

standard input	standard output
2	-1
2	1
12	2221
34	
43	
21	
3	
124	
356	
124	
536	

