Problem L. Completely Multiplicative Function

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

A completely multiplicative function is an arithmetic function (that is, a function whose domain is the natural numbers), such that $f(1)=1$ and $f(a b)=f(a) f(b)$ holds for all positive integers a and b.
Little Cyan Fish loves the concept of the completely multiplicative function, so he wants to find a completely multiplicative function $f: \mathbb{N} \rightarrow\{-1,1\}$ satisfying the sum of the value of $f(i)$ for all $1 \leq i \leq n$ must be exactly k.
Formally, you need to find a function $f(x)$ satisfying:

- $f(x) \in\{-1,1\}$ for all integers x.
- $f(x) f(y)=f(x y)$ for all integers x and y.
- $f(1)+f(2)+\cdots+f(n)=k$ for given integers n and k.

To test if you have truly understood the beauty of completely multiplicative functions, Little Cyan Fish has asked you to find such a function f.

Input

There are multiple test cases. The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, representing the number of test cases.
For each of the test case, the first line contains two integers n and $k\left(0 \leq k \leq n \leq 10^{6}, n \geq 1\right)$.
It is guaranteed that the sum of n over all test cases does not exceed 2×10^{6}.

Output

For each test case:
If there does not exist a solution, output one line containing a single integer -1 .
Otherwise, you should output a single line containing $f(1), f(2), \cdots, f(n)$, separated by spaces. The value of each $f(i)$ must be either 1 and -1 , and the sum of these values must be exactly k.
If there are multiple solutions, you may print any of them.

Example

standard input	standard output
4	1-1 1 1 1
42	$\begin{array}{lllllllllll}1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & -1\end{array}$
100	-1
101	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
1010	

