New but Nostalgic Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Given n strings w_1, w_2, \dots, w_n , please select k strings among them, so that the lexicographic order of string v is minimized, and output the optimal string v. String v satisfies the following constraint: v is the longest common prefix of two selected strings with different indices. Also, v is the lexicographically largest string among all strings satisfying the constraint.

More formally, let S be a set of size k, where all the elements in the set are integers between 1 and n (both inclusive) and there are no duplicated elements. Let $lcp(w_i, w_j)$ be the longest common prefix of string w_i and w_j , please find a set S to minimize the lexicographic order of the following string v and output the optimal string v.

$$v = \max_{i \in \mathbb{S}, j \in \mathbb{S}, i \neq j} \operatorname{lcp}(w_i, w_j)$$

In the above expression, max is calculated by comparing the lexicographic order of strings. Recall that:

- String p is a prefix of string s, if we can append some number of characters (including zero characters) at the end of p so that it changes to s. Specifically, empty string is a prefix of any string.
- The longest common prefix of string s and string t is the longest string p such that p is a prefix of both s and t. For example, the longest common prefix of "abcde" and "abcef" is "abc", while the longest common prefix of "abcde" and "bcdef" is an empty string.
- String s is lexicographically smaller than string $t \ (s \neq t)$, if
 - -s is a prefix of t, or
 - $-s_{|p|+1} < t_{|p|+1}$, where p is the longest common prefix of s and t, |p| is the length of p, s_i is the *i*-th character of string s, and t_i is the *i*-th character of string t.

Specifically, empty string is the string with the smallest lexicographic order.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and k $(2 \le n \le 10^6, 2 \le k \le n)$ indicating the total number of strings and the number of strings to be selected.

For the following n lines, the *i*-th line contains a string w_i $(1 \le |w_i| \le 10^6)$ consisting of lower-cased English letters.

It's guaranteed that the total length of all strings of all test cases will not exceed 10^6 .

Output

For each test case output one line containing one string indicating the answer. Specifically, if the answer is an empty string, print EMPTY.

Example

standard input	standard output
2	gdcpc
5 3	EMPTY
gdcpc	
gdcpcpcp	
suasua	
suas	
sususua	
3 3	
a	
b	
c	