New but Nostalgic Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Given n strings $w_{1}, w_{2}, \cdots, w_{n}$, please select k strings among them, so that the lexicographic order of string v is minimized, and output the optimal string v. String v satisfies the following constraint: v is the longest common prefix of two selected strings with different indices. Also, v is the lexicographically largest string among all strings satisfying the constraint.
More formally, let \mathbb{S} be a set of size k, where all the elements in the set are integers between 1 and n (both inclusive) and there are no duplicated elements. Let $\operatorname{lcp}\left(w_{i}, w_{j}\right)$ be the longest common prefix of string w_{i} and w_{j}, please find a set \mathbb{S} to minimize the lexicographic order of the following string v and output the optimal string v.

$$
v=\max _{i \in \mathbb{S}, j \in \mathbb{S}, i \neq j} \operatorname{lcp}\left(w_{i}, w_{j}\right)
$$

In the above expression, max is calculated by comparing the lexicographic order of strings.
Recall that:

- String p is a prefix of string s, if we can append some number of characters (including zero characters) at the end of p so that it changes to s. Specifically, empty string is a prefix of any string.
- The longest common prefix of string s and string t is the longest string p such that p is a prefix of both s and t. For example, the longest common prefix of "abcde" and "abcef" is "abc", while the longest common prefix of "abcde" and "bcdef" is an empty string.
- String s is lexicographically smaller than string $t(s \neq t)$, if
$-s$ is a prefix of t, or
$-s_{|p|+1}<t_{|p|+1}$, where p is the longest common prefix of s and $t,|p|$ is the length of p, s_{i} is the i-th character of string s, and t_{i} is the i-th character of string t.

Specifically, empty string is the string with the smallest lexicographic order.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n and $k\left(2 \leq n \leq 10^{6}, 2 \leq k \leq n\right)$ indicating the total number of strings and the number of strings to be selected.
For the following n lines, the i-th line contains a string $w_{i}\left(1 \leq\left|w_{i}\right| \leq 10^{6}\right)$ consisting of lower-cased English letters.
It's guaranteed that the total length of all strings of all test cases will not exceed 10^{6}.

Output

For each test case output one line containing one string indicating the answer. Specifically, if the answer is an empty string, print EMPTY.

Example

	standard input
2	gdandard output
53	EMPTY
gdcpc	
gdcpcpcp	
suasua	
suas	
sususua	
3 3	
a	
b	

