# Not Another Linear Algebra Problem 

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
1024 megabytes

What age is it that you are still solving traditional linear algebra problem?
You are given a prime number $q$.
Suppose $A$ and $B$ are two $n \times n$ square matrices such that $A B \equiv A(\bmod q)$, and each element of $A$ and $B$ is an integer from 0 to $q-1$.

- Here, $S \equiv T(\bmod q)$ implies that for each $1 \leq i, j \leq n$, we have $S_{i, j} \equiv T_{i, j}(\bmod q)$.

Given a fixed matrix $B(\operatorname{det} B \neq 0)$, it's too easy for you to just find an arbitrary suitable matrix $A$. Let $f(B)$ represent the number of matrices that satisfy the equation above. Your task is to calculate:

$$
\sum_{B \in M_{n}\left(\mathbb{F}_{q}\right)}[\operatorname{det} B \neq 0] 3^{f(B)}
$$

The answer can be quite large, you only need to output it modulo another given prime number, mod.

## Input

The first line of the input contains three integers $n, q$ and $\bmod .\left(1 \leq n \leq 10^{7}, 2 \leq q<\bmod\right.$, $10^{8} \leq \bmod \leq 10^{9}+7$ ).

It is guaranteed that $q$ and $\bmod$ are two prime numbers.

## Output

Output a single line contains a single integer, indicating the answer modulo the given number mod.

## Examples

| standard input | standard output |
| :---: | :--- | :--- |
| 221000000007 | 43046970 |
| 100127998244353 | 881381862 |

## Note

For $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, matrices $A$ that satisfy the condition are: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, totaling 4.
For $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$, the matrices $A$ that satisfy the condition are: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, totaling 1 .
For $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, all matrices $A$ satisfy the condition, totaling 16 .
For $B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, matrices $A$ that satisfy the condition are: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$, totaling 4 .
For $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, matrices $A$ that satisfy the condition are: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$, totaling 4 .

For $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, the matrices $A$ that satisfy the condition are: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, totaling 1 .
Therefore, the answer is $3^{4}+3^{1}+3^{16}+3^{4}+3^{4}+3^{1} \equiv 43046970\left(\bmod \left(10^{9}+7\right)\right)$.

