## Swapping Operation

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

Given a non-negative integer sequence $A=a_{1}, a_{2}, \ldots, a_{n}$ of length $n$, define

$$
F(A)=\max _{1 \leq k<n}\left(\left(a_{1} \& a_{2} \& \cdots \& a_{k}\right)+\left(a_{k+1} \& a_{k+2} \& \cdots \& a_{n}\right)\right)
$$

where \& is the bitwise-and operator.
You can perform the swapping operation at most once: choose two indices $i$ and $j$ such that $1 \leq i<j \leq n$ and then swap the values of $a_{i}$ and $a_{j}$.
Calculate the maximum possible value of $F(A)$ after performing at most one swapping operation.

## Input

There are multiple test cases. The first line of the input contains an integer $T$ indicating the number of test cases. For each test case:
The first line contains an integer $n\left(2 \leq n \leq 10^{5}\right)$ indicating the length of sequence $A$.
The second line contains $n$ integers $a_{1}, a_{2}, \cdots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$ indicating the given sequence $A$.
It's guaranteed that the sum of $n$ of all test cases will not exceed $10^{5}$.

## Output

For each test case output one line containing one integer indicating the maximum possible value of $F(A)$ after performing at most one swapping operation.

## Example

|  |  |  |  |  | standard input |  | standard output |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 |  |  |  |  |  |  | 7 |  |
| 6 |  |  |  |  |  | 3 |  |  |
| 6 | 5 | 4 | 3 | 5 | 6 |  |  |  |
| 6 |  |  |  |  |  |  |  |  |
| 1 | 2 | 1 | 1 | 2 | 2 |  |  |  |
| 5 |  |  |  |  |  |  |  |  |
| 1 | 1 | 2 | 2 | 2 |  |  |  |  |

## Note

For the first sample test case, we can swap $a_{4}$ and $a_{6}$ so the sequence becomes $\{6,5,4,6,5,3\}$. We can then choose $k=5$ so that $F(A)=(6 \& 5 \& 4 \& 6 \& 5)+(3)=7$.
For the second sample test case, we can swap $a_{2}$ and $a_{4}$ so the sequence becomes $\{1,1,1,2,2,2\}$. We can then choose $k=3$ so that $F(A)=(1 \& 1 \& 1)+(2 \& 2 \& 2)=3$.
For the third sample test case we do not perform the swapping operation. We can then choose $k=2$ so that $F(A)=(1 \& 1)+(2 \& 2 \& 2)=3$.

