
abc
APIO2023 Tasks

English (ISC)

Alice, Bob, and Circuit
The Cyberland Circuit Foundation consists of n members. Each member has his/her favorite
number and a unique name (the favorite numbers may not be distinct).

m letters have been sent between the members. Each letter has a sender and a recipient, and the
content of the letter is the sender's favorite number.

Each member calculates the sum of the contents (senders' favorite numbers) they received and
takes the modulo of 65536 (i.e., 2) as his/her result number.

Your task is to determine all result numbers.

However, the situation is not as straightforward as it seems. Alice, Bob, and Circuit decide to solve
this problem in a slightly more complicated way:

Alice knows all n members (name and favorite number), but knows no information about
letters. She needs to send a binary string to Circuit with a length of no more than 10 .
Bob knows all m letters (sender and recipient's name), but knows no information about
members. He needs to send a binary string to Circuit with a length of no more than 10 .
Circuit can receive binary strings sent by Alice and Bob, and subsequently generate a binary
string comprising 16n bits as output. However, due to its limited computational power,
Circuit is only capable of performing basic logical operations (e.g., AND, OR, NOT).

In the following, we will introduce how the circuit works in detail.

Circuit Details

The gate is the basic element of a circuit. A gate consists of zero or two boolean inputs(depending
on the type of gate), and one boolean output. There are two types of gates: input gates and
computation gates.

Input gates have no input and represent the bits from binary strings sent by Alice and Bob.
There will be l + l input gates, labeled from 0 to (l + l −1), where l , l are the
lengths of the strings from Alice and Bob, respectively.
For 0 ≤ i < l , the output of i-th gate is the i-th bit of the string from Alice;
For 0 ≤ i < l , the output of (i + l)-th gate is the i-th bit of the string from Bob.

Computation gates have two inputs and represent the computation process.
The labels for computation gates start from (l + l).

16

5

5

A B A B A B

A

B A

A B

abc (1 of 7)

For each computation gate, you should provide labels of two dependent gates for
input, and the operation type p(0 ≤ p ≤ 15).

To prevent circular dependencies, the labels of the two dependent gates must
be smaller than the label of the computation gate.
If outputs of its two dependent gates are x and x respectively (
x ,x ∈ {0,1}), then the output of the computation gate is:

f(p,x ,x) = mod 2

Here are some examples that may be useful for you:

x x
x AND x
f(8,x ,x)

x OR x
f(14,x ,x)

x XOR x
f(6,x ,x)

NOT x
f(5,x ,x)

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 1

1 1 1 1 0 0

Implementation Details

Please note:

All array indices start from 0. For example, if a is an array of length n , then a[0] to a[n-1]
are valid data, accessing indices beyond that range may cause an out-of-bounds error.
All strings are terminated by a null character \0 .

You should implement the following procedures:

Alice

 int alice(const int n, const char names[][5],

 const unsigned short numbers[], bool outputs_alice[]);

Direction Value Length Meaning Constraint

Input n 1 n 0 ≤ n ≤ 700

names n

The name
of each

member.

All names are distinct, consisting of
lowercase English letters only, and have

a maximum length of 4 characters.

0 1

0 1

0 1 ⌊
2x +2x0 1

p
⌋

0 1
0 1

0 1

0 1

0 1

0 1

0 1

0

0 1

abc (2 of 7)

Direction Value Length Meaning Constraint

numbers n

The favorite
number of

each
member.

Each number is in the range from 0 to
65535.

Output

outputs_alice l

The binary
string is
sent to
Circuit.

(Return
value)

1 l

You need to make sure that l does
not exceed 10 and when n is the

same, l must be fixed.

Bob

 int bob(const int m, const char senders[][5],

 const char recipients[][5], bool outputs_bob[]);

Direction Value Length Meaning Constraint

Input

m 1 m 0 ≤m ≤ 1000

senders m

The sender's
name on

each letter.

All names appear in Alice's input

recipients m

The
recipient's
name on

each letter.

Output

outputs_bob l

The binary
string is sent

to Circuit.

(Return
value)

1 l

You need to make sure that l does
not exceed 10 and when m is the

same, l must be fixed.

Circuit

To ensure that the computation process of the Circuit is like a general circuit, you cannot directly
obtain the binary strings sent from Alice and Bob to Circuit. You only know the lengths of these
two strings and output the circuit structure.

A

A

A

5

A

B

B

B
5

B

abc (3 of 7)

 int circuit(const int la, const int lb, int operations[],

 int operands[][2], int outputs_circuit[][16]);

Direction Value Length Meaning Constraint

Input
la 1 l

lb 1 l

Output

operations l

The type of
operation
performed

by each gate
in the circuit.

An integer from 0 to 15.

operands l

The operand
used by each

gate in the
circuit.

The number must be less than the
label of the current gate.

outputs_circuit n

The gate
label of the

circuit
output.

 outputs_circuit[i][j] denotes
the j-th bit (counting from the least
significant bit) of the final result for
the i-th member. The members are
ordered according to Alice's input.

(Return value) 1

l, which
represents

the total
number of

gates
(including

input gates).

You need to ensure that l ≤ 2 × 10

Although you can modify the information of gates with indices less than l + l in the
operations and operands arrays, the grader would ignore such modification.

Example

Consider the following calls:

 alice(3, {"alic", "bob", "circ"}, {10000, 20000, 30000}, outputs_alice);

bob(5, {"alic", "bob", "bob", "circ", "circ"},

 {"circ", "circ", "alic", "circ", "circ"}, outputs_bob);

It represents the following scenario:

A

B

7

A B

abc (4 of 7)

Alice knows there are 3 members, the member with the name alic has a favorite number
10000, etc. A possible output for alice() is that,

The return value of alice() is 2, representing l = 2.
Inside alice() function, set outputs_alice[0] = 1, outputs_alice[1] = 0 ,
representing that the result binary string is 10.

Bob knows there are 5 letters, the first letter is from alic to circ , etc. A possible output for
bob() is that,

The return value of bob() is 3, representing l = 3.
Inside bob() function, set outputs_bob[0] = 1, outputs_bob[1] = 1,

outputs_bob[2] = 0 , representing that the result binary string is 110.

Based on previous outputs for alice() and bob() , there will be the following call:

circuit(2, 3, operations, operands, outputs_circuit);

A correct output for this function would be

The return value of circuit() is 7, meaning that we add two computation gates, labeled 5
and 6.
Inside circuit() , set operations , operands , and outputs_circuit in the following way:

operations = {-1, -1, -1, -1, -1, 8, 14} , where we use -1 to represent
ignored information from input gates;
operands = {{-1, -1}, {-1, -1}, {-1, -1}, {-1, -1}, {-1, -1}, {0,

4}, {2, 5}} ;
outputs_circuit = {{5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 6, 6, 5, 5, 6,

5}, ...} . The array is a bit long, you can check abc.cpp in the attachments for the
full array.

According to the output, the computation procedure is that,

Add a type 8 computation gate, with input from gate 0 and gate 4. The output of gate 0 is
the 0-th bit of the string from Alice, which is 1; The output of gate 4 is the 2-nd bit of the
string from Bob, which is 0. So the output for gate 5 is f(8, 0, 1) = 0 AND 1 = 0.
Add a type 14 computation gate, with input from gate 2 and gate 5. The output of gate 2 is
the 0-th bit of the string from Bob, which is 1; The output of gate 5 is 0. So the output for
gate 6 is f(14, 1, 0) = 1 OR 0 = 1.
output_circuit[0] represents the final result of alic , which is
(0100111000100000) = 20000. Since alic only receives a letter from bob , the final result of
alic is 20000.
The final result of bob should be 0, since he receives no letter; The final result of circ should
be (10000 + 20000 + 30000 + 30000) mod 65536 = 24464 .

abc.cpp in the attachments can pass this example, but we do not guarantee that it can pass other

test cases.

A

B

2

abc (5 of 7)

Constraints

For all test cases:

0 ≤ n ≤ 700, 0 ≤m ≤ 1000.
All names are distinct, consisting of lowercase English letters only, and have a maximum
length of 4 characters.
The favorite number of each member is in the range of 0 to 65535.
The names of all senders and recipients appear in Alice's input array names .
alice() and bob() have a memory limit of 2048 MiB and a time limit of 0.02 seconds,
respectively.
circuit() has a memory limit of 2048 MiB and a time limit of 7 seconds.

For the final evaluation, alice() and bob() may be called multiple times in a single test

case. The time limit of 0.02 second is for each call.

Subtasks

Subtask Type A (12 points)

Subtask 1,2,3 are in subtask type A, where n = 1.

Each subtask has the following additional constraints:

Subtask 1 (4 points): m = 0.
Subtask 2 (4 points): 0 ≤m ≤ 1.
Subtask 3 (4 points): 0 ≤m ≤ 1000.

Subtask Type B (54 points)

Subtask 4,5,6 are in subtask type B, where:

0 ≤ n ≤ 30, ≤m ≤ n .
There are no two letters with the same sender and recipient.
All member names appear in Bob's input (i.e., each member either sends at least one letter
or receives at least one letter).

Each subtask has the following additional constraints:

Subtask 4 (24 points): n = 26, All members' names are single lowercase letters, and in Alice's
input, they appear in order from a to z .
Subtask 5 (24 points): n = 26.
Subtask 6 (6 points): No special restrictions.

Subtask Type C (34 points)

2
n 2

abc (6 of 7)

Subtask 7,8,9 are in subtask type C, where 0 ≤ n ≤ 700, 0 ≤m ≤ 1000.

Each subtask has the following additional constraints:

Subtask 7 (18 points): n = 676, all members' names are two lowercase letters, and in Alice's
input, they appear in lexicographical order (e.g., aa , ab , ac , ..., az , ba, ..., bz , ca , ..., zz).
Subtask 8 (10 points): n = 676.
Subtask 9 (6 points): No additional constraints.

Sample Grader

The sample grader reads the input in the following format:

Line 1: n m
Line 2 + i(0 ≤ i ≤ n −1): names numbers

Line 2 + n + i(0 ≤ i ≤m−1): senders recipients .

The sample grader outputs in the following format:

If the program finishes successfully, the sample grader will output n lines, each containing
an integer, representing the final result calculated by functions you implement for each
member.
Otherwise, the grader would output nothing to stdout and prints the error messages to the
file abc.log in the directory.
Additionally, the sample grader will output values of l , l , l and the running time of each
function to abc.log .

The sample grader will not check the memory limit and the restriction that for the same n /
m, l / l must be equal.

i i

i i

A B

A B

abc (7 of 7)

