Problem H. Optimal Quadratic Function

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
10 seconds
1024 mebibytes

Two variables x and y are dependent to each other with the relation $y=f(x)$ where f is a quadratic function: $f(x)=a x^{2}+b x+c$ with some real numbers a, b, and c. However, the function f is unknown and you want to figure out its best estimation.
For that purpose, you have obtained N observed y-values $y_{1}, y_{2}, \ldots, y_{N}$ for x-values $x_{1}, x_{2}, \ldots, x_{N}$, respectively, by experiments. The observed values $y_{1}, y_{2}, \ldots, y_{N}$ contain some errors from several sources, so it is unlikely that all of them are exact function values for a certain quadratic function. Therefore, you need to find an optimal estimation of the function f that minimizes the error.
For any quadratic function f, the error of a data pair $\left(x_{i}, y_{i}\right)$ is defined to be $\left(y_{i}-f\left(x_{i}\right)\right)^{2}$, and the error of f is defined to be the maximum of these errors over all the N data pairs. Write a program that, given the N observed data pairs, finds out an optimal estimation of function f that minimizes the error and prints out the error value.

Input

The first line contains an integer T, the number of test cases ($1 \leq T \leq 100000$). The test cases follow.
The first line of each test case contains an integer N, the number of observed data pairs ($1 \leq N \leq 100000$).
Each of the next N lines contains two integers x_{i} and y_{i}, the i-th data pair $\left(-10^{6} \leq x_{i}, y_{i} \leq 10^{6}\right)$.
The sum of N over all test cases does not exceed 200000 .

Output

For each test case, print a line with a real number: the minimum possible error value.
The answer will be considered correct if its absolute or relative error is within 10^{-6}.

Example

	standard input	standard output
1		5.062500000000
4		
0	0	
1	3	
2	9	
3	0	

