Problem F. Forever Young

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Little Misha plays with infinite arrays which consist of nonnegative integers. Let us call such an array good if it is non-increasing.

In one step, Misha can increase or decrease one number in a good array by 1, if the array will remain good after this operation as well.

Initially, Misha had an array A. Misha made k steps and obtained an array B. In how many ways he could have obtained it?

Input

The first line contains a single integer $n(0 \leq n \leq 60)$: the number of nonzero elements in A. The second line contains n integers separated by spaces: $60 \geq a_{1} \geq a_{2} \geq \cdots \geq a_{n}>0$, the elements themselves. All other elements of A are zeroes.

The next two lines contain a description of B in the same format.
Additionally, it is guaranteed that $0 \leq \sum a_{i} \leq 60$ and $0 \leq \sum b_{i} \leq 60$.
The last line contains the only integer $k\left(0 \leq k \leq 10^{6}\right)$.

Output

Print the desired number of ways modulo prime number 998244353.

Examples

	standard input	standard output	
3		7	
3	2	1	
3	2	1	
2		0	
3			
3	2	1	
3	2	1	
1111			

Note

In the first sample, the ways are:

```
{3,2,1} }->{4,2,1}->{3,2,1}
{3,2,1}->{3,3,1}->{3,2,1},
{3,2,1}->{3,2,2}->{3,2,1},
{3,2,1} }->{3,2,1,1}->{3,2,1}
{3,2,1}->{2,2,1}->{3,2,1},
{3,2,1}->{3,1,1} }->{3,2,1}
{3,2,1} }->{3,2}->{3,2,1}
```

In the second sample, it is impossible to obtain the second array from the first in 1111 steps.

