Problem I. Endless Road

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	1024 mebibytes

Suppose we have three chips on integer points on an infinite line (it is possible that two or more chips are at the same point). Every second one chip, taken equiprobably, moves to the next integer point (if the point was equal x, it becomes $x+1$).

For each value of t from 1 to n, your task is to find the expected value of the maximal chip coordinate after t seconds.

Input

The first line of input contains three integers $a, b, c\left(0 \leq a \leq b \leq c \leq 10^{6}\right)$: the initial coordinates of the chips.
The second line contains a single integer $n\left(1 \leq n \leq 2 \cdot 10^{6}\right)$: the maximal time we are interested in.

Output

For each t from 1 to n, print a single line with a single number: the expected value of the maximal chip coordinate after t seconds, expressed as an integer modulo prime number 998244353 . Formally, you can see that the expectation is a rational number $\frac{p}{q}$, where q is coprime with 998244353 . You should output the number $p q^{-1}$ modulo 998244353.

Examples

standard input	standard output
000	1
5	332748119
	554580198
	813384290
	110916042
111222456	332748574
	665496692
	457
	332748575
	665496693
	458
	332748576
	665496694
	459
	332748577

