A Tree and Two Edges
 Problem ID: atreeandtwoedges
 Time limit: 3 seconds

Given a connected simple graph (with at most one edge between any pair of nodes) with n nodes and $n+1$ edges (that's a tree with two extra edges), answer a list of queries: for two distinct nodes, how many simple paths are there between them? A simple path is a path that does not repeat nodes.

Input

The first line of input contains two integers $n\left(4 \leq n \leq 5 \times 10^{4}\right)$ and $q\left(1 \leq q \leq 5 \times 10^{4}\right)$, where n is the number of nodes and q is the number of queries. The nodes are numbered from 1 to n.

Each of the next $n+1$ lines contains two integers a and $b(1 \leq a<b \leq n)$ indicating that there is an edge in the graph between nodes a and b. All edges are distinct.

Each of the next q lines contains two integers u and $v(1 \leq u<v \leq n)$. This is a query for the number of simple paths between nodes u and v.

Output

Output q lines. On each line output a single integer, which is the number of simple paths between the query nodes. Output the answers to the queries in the order they appear in the input.

Sample Input $1 \quad$ Sample Output 1

4	6	3
1	2	3
1	3	3
1	4	3
2	3	3
2	4	4
1	2	
1	3	
1	4	
2	3	
2	4	
3	4	

Sample Input 2	Sample Output 2
6	4
1	2
1	3
1	6
2	3
3	4
3	5
4	5
1	2
1	3
1	4
1	6

