Power of Divisors
 Problem ID: powerofdivisors
 Time limit: 1 second

Consider a positive integer n. Let $f(n)$ be the number of positive integer divisors of n. For example, if $n=8$ then $f(n)=4$, since the divisors of 8 are $1,2,4$ and 8 .

Now, consider a positive integer x. What is the smallest value of n such that $n^{f(n)}=x$?

Input

The single line of input contains a single integer $x\left(1 \leq x \leq 10^{18}\right)$. This is the x of the statement above.

Output

Output a single integer, which is the smallest value of n such that $n^{f(n)}=x$, or -1 if no such value of n exists.

Sample Input 1	Sample Output 1
15625	25

Sample Input 2	Sample Output 2
64000000	20

Sample Input 3
Sample Output 3

65536	-1

