Problem A. The Grand Tournament

Input file:
standard input
Output file: standard output
Today, The First Grand Tournament of Automated Driving has officially commenced!
The experiment field of this tournament is a rectangular region on a 2-dimensional plane, with axes parallel to the coordinate axes. The bottom-left corner of the field is at coordinate $\left(x_{l}, y_{l}\right)$ while the top-right corner is at coordinate $\left(x_{r}, y_{r}\right)$. There are two segments A and B lying strictly inside the rectangle. The two segments may share common points. There is also a car inside the rectangle, which can be regarded as a point.
A subtask of this tournament requires that the distances between the car and the two segments must be equal all the time during the movement. The distance between a point P and a segment Q is defined as the minimum Euclidean distance from P to any point on Q.

Figure 1: Explanation of the sample data.
Please write a program to find the area of valid positions of the car.

Input

The input contains multiple cases. The first line of the input contains a single integer $T\left(1 \leq T \leq 10^{5}\right)$, indicating the number of test cases.
For each case, the first line of the input contains four integers $x_{l}, y_{l}, x_{r}, y_{r}$ ($-1000 \leq x_{l}<x_{r} \leq 1000$, $-1000 \leq y_{l}<y_{r} \leq 1000$), denoting the coordinates of the bottom-left and the top-right corners of the rectangle. Each of the next two lines contains four integers $x_{1}, y_{1}, x_{2}, y_{2}$, denoting a segment that connects $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, where $x_{1}, x_{2} \in\left(x_{l}, x_{r}\right)$ and $y_{1}, y_{2} \in\left(y_{l}, y_{r}\right)$.
For each case, it is guaranteed that the two endpoints of each segment do not coincide.

Output

For each test case, print a single line containing a single real number, the area of valid positions of the car. Your answer will be considered correct if the absolute or relative error does not exceed 10^{-9}.
Formally, if your answer is a and the jury's answer is b, then your answer will be considered correct if and only if $\frac{|a-b|}{\max \{1,|b|\}} \leq 10^{-9}$.

The 2020 ICPC Asia Shenyang Regional Programming Contest
Northeastern University, July 18, 2021 (Sunday)

Example

			standard input	standard output	
2				0.000000000000000	
0	0	3	3		1.000000000000000
1	1	1	2		
2	1	2	2		
0	0	3	3		
1	1	1	2		
1	2	2	2		

