Problem A. A Bite of Teyvat

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 megabytes

Xiangling, one of the greatest chef in Teyvat, is preparing for the Moonchase banquet. Xiangling has bought n round plates and her friend and companion Guoba will help place these n plates on the table in a line. The i-th plate placed has radius r_{i} and the center of this plate locates at $\left(x_{i}, 0\right)$ on the table.
However, Paimon the emergency food has been tired of waiting for the banquet a long time and begins finding the total area covered by the plates on the table after each placement.

Pixiv ID: 93526437

Input

The first line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$, indicating the number of plates Xiangling has bought. Then follow n lines, the i-th of which contains two integers $x_{i}\left(-10^{5} \leq x_{i} \leq 10^{5}\right)$ and $r_{i}\left(1 \leq r_{i} \leq 10^{6}\right)$, indicating that the i-th plate placed by Guoba has radius r_{i} and the center of this plate locates at ($x_{i}, 0$) on the table.

Output

Output n lines, the i-th of which contains a real number, indicating the total area covered by the plates on the table after Guoba places the first i-th plates.
Your answer is acceptable if its absolute or relative error does not exceed 10^{-9}. Formally speaking, suppose that your output is x and the jury's answer is y, your output is accepted if and only if $\frac{|x-y|}{\max (1,|y|)} \leq 10^{-9}$.

Example

	standard input	standard output
4	1	3.141592653589793
2	1	6.283185307179586
3	1	8.196408262160623
1	1	8.881261518532902

Note

In the sample case:

1. The total area covered by the first plate is π;

2. The total area covered by the first two plates is 2π;

3. The total area covered by the first three plates is $\frac{14 \pi+3 \sqrt{3}}{6}$;

4. The total area covered by all the four plates is $\frac{4 \pi+3 \sqrt{3}}{2}$.

