Problem G. Encoded Strings II

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Tommy has just invented an interesting string encoding algorithm, which is described below.

• For every string S, we may define a character-mapping function F_S , which maps every character occurring in S to a lowercase letter, as below

$$F_S(c) = \operatorname{chr}(G(c, S))$$

where chr(i) is the (i+1)-th lowercase Latin letter, and G(c, S) is the number of different characters after the last occurrence of c in S.

• To encode a string S by Tommy's algorithm, replace every character c in S by $F_S(c)$ simultaneously.

For example, the encoded string of abc is cba, and the encoded string of cac is aba.

You are given a string of length n and then encode all the $2^n - 1$ nonempty subsequences. Your task is to find the encoded string that has the greatest lexicographical order among all the encoded strings.

Input

The first line contains an integer $n \ (1 \le n \le 1\,000)$.

The second line contains a string of length n, which consists of only the first 20 lowercase letters, a to t.

Output

Output the encoded string that has the greatest lexicographical order among all the encoded strings.

Examples

standard input	standard output
4	bbaa
aacc	
4	bba
acac	