Problem H. Line Graph Matching

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
1 second
512 megabytes

In the mathematical discipline of graph theory, the line graph of a simple undirected weighted graph G is another simple undirected weighted graph $L(G)$ that represents the adjacency between every two edges in G.

Precisely speaking, for an undirected weighted graph G without loops or multiple edges, its line graph $L(G)$ is an undirected weighted graph such that:

- Each vertex of $L(G)$ represents an edge of G;
- Two vertices of $L(G)$ are adjacent if and only if their corresponding edges share a common endpoint in G, and the weight of such edge between this two vertices is the sum of the weights of their corresponding edges.

A maximum weighted matching in a simple undirected weighted graph is defined as a set of edges where no two edges share a common vertex and the sum of the weights of the edges in the set is maximized.
Given a simple undirected weighted connected graph G, your task is to find the sum of the weights of the edges in the maximum weighted matching of $L(G)$.

Input

The first line contains two integers $n\left(3 \leq n \leq 10^{5}\right)$ and $m\left(n-1 \leq m \leq \min \left(\frac{n(n-1)}{2}, 2 \times 10^{5}\right)\right)$, indicating the number of vertices and edges in the given graph G.
Then follow m lines, the i-th of which contains three integers $u, v(1 \leq u, v \leq n)$ and $w\left(1 \leq w \leq 10^{9}\right)$, indicating that the i-th edge in the graph G has a weight of w and connects the u-th and the v-th vertices. It is guaranteed that the graph G is connected and contains no loops and no multiple edges.

Output

Output a line containing a single integer, indicating the sum of the weights of the edges in the maximum weighted matching of $L(G)$.

The 2021 ICPC Asia Shenyang Regional Contest
Northeastern University, November 21, 2021

Examples

		standard input	
5	6		standard output
1	2	1	
1	3	2	
1	4	3	
4	3	4	
4	5	5	
2	5	6	
6	5		
1	2	4	12
2	3	1	
3	4	3	
4	5	2	
5	6	5	
5	5		14
1	2	1	
2	3	2	
3	4	3	
4	5	4	
5	1	5	

