Problem H. Line Graph Matching

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

In the mathematical discipline of graph theory, the line graph of a simple undirected weighted graph G is another simple undirected weighted graph L(G) that represents the adjacency between every two edges in G.

Precisely speaking, for an undirected weighted graph G without loops or multiple edges, its line graph L(G) is an undirected weighted graph such that:

- Each vertex of L(G) represents an edge of G;
- Two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G, and the weight of such edge between this two vertices is the sum of the weights of their corresponding edges.

A maximum weighted matching in a simple undirected weighted graph is defined as a set of edges where no two edges share a common vertex and the sum of the weights of the edges in the set is maximized.

Given a simple undirected weighted connected graph G, your task is to find the sum of the weights of the edges in the maximum weighted matching of L(G).

Input

The first line contains two integers n $(3 \le n \le 10^5)$ and m $(n-1 \le m \le \min(\frac{n(n-1)}{2}, 2 \times 10^5))$, indicating the number of vertices and edges in the given graph G.

Then follow m lines, the i-th of which contains three integers u, v ($1 \le u, v \le n$) and w ($1 \le w \le 10^9$), indicating that the i-th edge in the graph G has a weight of w and connects the u-th and the v-th vertices. It is guaranteed that the graph G is connected and contains no loops and no multiple edges.

Output

Output a line containing a single integer, indicating the sum of the weights of the edges in the maximum weighted matching of L(G).

The 2021 ICPC Asia Shenyang Regional Contest Northeastern University, November 21, 2021

Examples

standard input	standard output
5 6	21
1 2 1	
1 3 2	
1 4 3	
4 3 4	
4 5 5	
2 5 6	
6 5	12
1 2 4	
2 3 1	
3 4 3	
4 5 2	
5 6 5	
5 5	14
1 2 1	
2 3 2	
3 4 3	
4 5 4	
5 1 5	