Problem K. Matrix Operations

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
15 seconds
512 megabytes

Given an $n \times n$ matrix where each element $a_{i, j}(1 \leq i, j \leq n)$ in the matrix is 0 initailly, you are asked to successively perform n groups of operations on the matrix.
For each group of operations, you are given six parameters $x, y, z_{1}, z_{2}, z_{3}$ and z_{4} and need to do the following operations in order:

1. Find the maximum element among $a_{i, j}(1 \leq i<x, 1 \leq j<y)$, denoted by w_{1};
2. Find the maximum element among $a_{i, j}(1 \leq i<x, y \leq j \leq n)$, denoted by w_{2};
3. Find the maximum element among $a_{i, j}(x \leq i \leq n, 1 \leq j<y)$, denoted by w_{3};
4. Find the maximum element among $a_{i, j}(x \leq i \leq n, y \leq j \leq n)$, denoted by w_{4};
5. Increase each element $a_{i, j}(1 \leq i<x, 1 \leq j<y)$ by z_{1};
6. Increase each element $a_{i, j}(1 \leq i<x, y \leq j \leq n)$ by z_{2};
7. Increase each element $a_{i, j}(x \leq i \leq n, 1 \leq j<y)$ by z_{3};
8. Increase each element $a_{i, j}(x \leq i \leq n, y \leq j \leq n)$ by z_{4}.

After performing each group of operations, you need to output the values of w_{1}, w_{2}, w_{3} and w_{4}.

Input

The first line contains an integer $n\left(2 \leq n \leq 10^{5}\right)$, indicating the number of rows as well as columns in the matrix as well as the number of groups of operations.
Then follow n lines, each of which contains contains six integers $x, y(1<x, y \leq n), z_{1}, z_{2}, z_{3}$ and z_{4} $\left(1 \leq z_{1}, z_{2}, z_{3}, z_{4} \leq 10^{9}\right)$, indicating the parameters of a group of operations as described above.

Output

For each operation, output a line containing four integers, indicating the values of w_{1}, w_{2}, w_{3} and w_{4}.

Example

standard input	standard output
3	0000
$\begin{array}{lllllll}3 & 3 & 1 & 2 & 3\end{array}$	1234
$2312 \begin{array}{llll}2 & 1\end{array}$	4668
321234	

