Problem B. Minimize Median

Input file: standard input
 Output file: standard output
 Time limit: $\quad 2$ seconds
 Memory limit: $\quad 256$ megabytes

You are given an array A containing N integers, each between 1 and $M . N$ is odd.
You are also given an array cost of length M.
In one move, you can do the following:

- Pick an index $i(1 \leq i \leq N)$ and an integer $x(1 \leq x \leq M)$
- Replace $A[i]$ with $\lfloor A[i] / x\rfloor$, for a cost of $\operatorname{cost}[x]$.

Here, \rfloor denotes the floor function, i.e, $\lfloor y\rfloor$ is the largest integer that doesn't exceed y.
You can perform operations as long as their total cost doesn't exceed K.
Under this condition, find the minimum possible value of $\operatorname{median}(A)$ that can be achieved.
As a reminder, $\operatorname{median}(A)$ is the middle element of A when it is sorted. For example, $\operatorname{median}([3,1,2])=2$.

Input

The first line contains a single integer T, the number of testcases. Then the testcases follow.
The first line of each test case contains three space-separated integers N, M, K.
The second line of each test case contains N space-separated integers $A[1], A[2], \cdots, A[N]$.
The third line of each test case contains M space-separated integers $\operatorname{cost}[1], \operatorname{cost}[2], \cdots, \operatorname{cost}[M]$.

Constraints

- $1 \leq T \leq 10^{5}$
- $1 \leq N \leq 10^{6}$
- N is odd.
- $2 \leq M \leq 10^{6}$
- $0 \leq K \leq 10^{9}$
- $1 \leq A[i] \leq M$
- $1 \leq \operatorname{cost}[i] \leq 10^{9}$
- The sum of N across all testcases doesn't exceed 10^{6}.
- The sum of M across all testcases doesn't exceed 10^{6}.

Output

For each testcase, print a single integer, the minimum possible median of A.

Example

			standard input		standard output
3				2	
3	5	0			2
2	5	2			1
3	2	4	6	13	
3	5	3			
2	5	3			
3	2	4	6	13	
3	5	6			
2	5	2			
3	2	4	6	13	

Note

Test case 1: No moves can be made, so the answer is median $([2,5,2])=2$.
Test case 2: Perform the following move:

- Divide $A[3]=3$ by $x=2$. This sets $A[3]=1$ for a cost of 2 .

The answer is median $([2,5,1])=2$, which is optimal.
Test case 3: Perform the following moves:

- Divide $A[2]=5$ by $x=3$. This sets $A[2]=1$ for a cost of 4 .
- Divide $A[3]=2$ by $x=2$. This sets $A[3]=1$ for a cost of 2 .

The answer is $\operatorname{median}([2,1,1])=1$, which is optimal.

