

Problem B. Minimize Median

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

You are given an array A containing N integers, each between 1 and M. N is **odd**. You are also given an array *cost* of length M.

In one move, you can do the following:

- Pick an index $i \ (1 \leq i \leq N)$ and an integer $x \ (1 \leq x \leq M)$
- Replace A[i] with $\lfloor A[i]/x \rfloor$, for a cost of cost[x].

Here, $\lfloor \rfloor$ denotes the floor function, i.e, $\lfloor y \rfloor$ is the largest integer that doesn't exceed y. You can perform operations as long as their total cost doesn't exceed K. Under this condition, find the minimum possible value of median(A) that can be achieved. As a reminder, median(A) is the middle element of A when it is sorted. For example, median([3, 1, 2]) = 2.

Input

The first line contains a single integer T, the number of testcases. Then the testcases follow.

The first line of each test case contains three space-separated integers N, M, K.

The second line of each test case contains N space-separated integers $A[1], A[2], \dots, A[N]$.

The third line of each test case contains M space-separated integers $cost[1], cost[2], \cdots, cost[M]$.

Constraints

- $\bullet \ 1 \leq T \leq 10^5$
- $1 \le N \le 10^6$
- N is odd.
- $2 \le M \le 10^6$
- $0 \le K \le 10^9$
- $1 \le A[i] \le M$
- $1 \le cost[i] \le 10^9$
- The sum of N across all test cases doesn't exceed 10^6 .
- The sum of M across all testcases doesn't exceed 10^6 .

Output

For each testcase, print a single integer, the minimum possible median of A.

Example

standard input	standard output
3	2
3 5 0	2
252	1
3 2 4 6 13	
353	
253	
3 2 4 6 13	
356	
252	
3 2 4 6 13	

Note

Test case 1: No moves can be made, so the answer is median([2,5,2]) = 2. Test case 2: Perform the following move:

• Divide A[3] = 3 by x = 2. This sets A[3] = 1 for a cost of 2.

The answer is median([2, 5, 1]) = 2, which is optimal.

Test case 3: Perform the following moves:

- Divide A[2] = 5 by x = 3. This sets A[2] = 1 for a cost of 4.
- Divide A[3] = 2 by x = 2. This sets A[3] = 1 for a cost of 2.

The answer is median([2, 1, 1]) = 1, which is optimal.