## Problem D. Central Subset

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 256 megabytes |

You are given a undirected connected graph on $N$ vertices and $M$ edges. The vertices are numbered from 1 to $N$. You have to find a subset of vertices $S$, such that both conditions are satisfied:

- $|S| \leq\lceil\sqrt{N}\rceil$ - the number of vertices in $S$ should be less than or equal to $\lceil\sqrt{N}\rceil$
- For every vertex $u$ in the graph, there exists a vertex $v$ in $S$ such that $\operatorname{dist}(u, v) \leq\lceil\sqrt{N}\rceil$

If there is no such subset then print -1 .
Note:

- $\lceil x\rceil$ is the smallest integer greater than or equal to $x$.
- $\operatorname{dist}(u, v)$ is the number of edges in the shortest path from $u$ to $v$.


## Input

First line contains a single integer $T$ denoting the number of test cases.
The first line of each test case contains two space separated integers $N$ and $M$ denoting the number of vertices and the number of edges respectively.
The next $M$ lines each contains two space separated integers $u$ and $v$ denoting that there is an edge between $u$ and $v$.
There are no self-loops or multi-edges.

## Constraints

- $1 \leq T \leq 2 \cdot 10^{4}$.
- $1 \leq N \leq 2 \cdot 10^{5}$.
- $0 \leq M \leq 10^{6}$.
- $1 \leq u, v \leq N$.
- Sum of $N$ over all test cases does not exceed $2 \cdot 10^{5}$.
- Sum of $M$ over all test cases does not exceed $10^{6}$.
- The graph is connected.


## Output

For every test case:

- If there is no valid subset then print -1 in a new line.
- If there exists a subset $S$, then print the size of the subset in a new line. In the next line print $|S|$ space separated distinct vertices in any order. If there are multiple valid subsets then print any.


## Example

|  | standard input |  | standard output |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  | 1 |  |  |
| 4 | 3 | 2 |  |  |
| 1 | 2 |  | 3 |  |
| 2 | 3 | 5 | 6 |  |
| 3 | 4 |  |  |  |
| 6 | 7 |  |  |  |
| 1 | 2 |  |  |  |
| 2 | 3 |  |  |  |
| 3 | 1 |  |  |  |
| 1 | 4 |  |  |  |
| 4 | 5 |  |  |  |
| 5 | 6 |  |  |  |
| 6 | 4 |  |  |  |

## Note

- For the first test case, $\lceil\sqrt{4}\rceil=2$. The valid subsets are $\{2\},\{3\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$. Any one of them can be printed.
- For the second test case, $\lceil\sqrt{6}\rceil$. One example of a valid subset is $\{2,5,6\}$.

