Problem F. Longest Strictly Increasing Sequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

Given an array b of length n, find an array a of length n such that, for each $1 \leq i \leq n$, the length of the longest strictly increasing subsequence of $[a[1], a[2], \cdots, a[i]]$ is equal to $b[i]$.
For an array c of length m, a subsequence $c\left[i_{1}\right], c\left[i_{2}\right], \cdots, c\left[i_{k}\right]$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m$ is called strictly increasing if $c\left[i_{1}\right]<c\left[i_{2}\right]<\cdots<c\left[i_{k}\right]$.

Input

The first line contains a single integer T, denoting the number of test cases.
Each test case contains two lines:

- First line contains n - the size of array b.
- Second line contains n space-separated integers where the i-th integer represents $b[i]$.

Constraints

- $1 \leq T \leq 4000$
- $1 \leq n \leq 10$
- $1 \leq b[i] \leq 10$
- $1 \leq$ sum n of all tests in a testfile ≤ 20000
- $1 \leq a[i] \leq 100$

Output

For each test case, print YES if there exists an array a that satisfies the conditions, NO otherwise on a new line.
If YES, print n space-separated integers representing elements of the array a in a new line.

Example

standard input	standard output
2	NO
6	YES
123257	12
2	
12	

Note

In the first test case, we can prove that no array exists which satisfies the condition.
In the second test case, $[4,9]$ satisfies all conditions. LIS of [4] is [4] and its length is 1, and LIS of $[4,9]$ is $[4,9]$ and its length is 2 . Other acceptable answers include $[5,20]$ and $[25,26]$. On the other hand, $[5,5]$ and $[10,5]$ are incorrect answers.

