Problem G. Perfect Strings

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
256 megabytes

Consider a character set σ of size c. There are $c^{2 n}$ strings of length $2 n$, each of whose characters lies in σ. Let's call such a string perfect if the set of its indices $\{1,2, \ldots, 2 n\}$ can be partitioned into n pairs, such that:

- Each index is a part of exactly one pair
- For each pair $(i, j), S[i]=S[j]$
- No two pairs are entangled, that is, for any two pairs (i, j) and $(k, l), i<k<j<l$ must NOT be true.

Given n and c, count the number of perfect strings of length $2 n$, modulo $10^{9}+7$.

Input

The first line contains T, the number of testcases. Then the testcases follow.
Each testcase consists of two space separated integers, n and c.

Constraints

- $1 \leq T \leq 10^{5}$
- $1 \leq n, c \leq 10^{7}$
- The sum of n over all testcases doesn't exceed 10^{7}.

Example

	standard input	standard output	
2	1	1	
2	2	6	

Note

In the first testcase, there is only one string and it is clearly perfect
In the second testcase, let the character set be $\{a, b\}$. The perfect strings are (along with a partition of their indices into pairs):

aaaa	$\{(1,4),(2,3)\}$
aabb	$\{(1,2),(3,4)\}$
abba	$\{(1,4),(2,3)\}$
baab	$\{(1,4),(2,3)\}$
bbaa	$\{(1,2),(3,4)\}$
bbbb	$\{(1,2),(3,4)\}$

