

# Problem G. Perfect Strings

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 3 seconds       |
| Memory limit: | 256 megabytes   |

Consider a character set  $\sigma$  of size c. There are  $c^{2n}$  strings of length 2n, each of whose characters lies in  $\sigma$ . Let's call such a string perfect if the set of its indices  $\{1, 2, ..., 2n\}$  can be partitioned into n pairs, such that:

- Each index is a part of exactly one pair
- For each pair (i, j), S[i] = S[j]
- No two pairs are entangled, that is, for any two pairs (i, j) and (k, l), i < k < j < l must NOT be true.

Given n and c, count the number of perfect strings of length 2n, modulo  $10^9 + 7$ .

#### Input

The first line contains T, the number of test cases. Then the test cases follow.

Each test case consists of two space separated integers,  $\boldsymbol{n}$  and  $\boldsymbol{c}.$ 

## Constraints

- $1 \le T \le 10^5$
- $1 \le n, c \le 10^7$
- The sum of n over all testcases doesn't exceed  $10^7$ .

## Example

| standard input | standard output |
|----------------|-----------------|
| 2              | 1               |
| 3 1            | 6               |
| 2 2            |                 |

#### Note

In the first testcase, there is only one string and it is clearly perfect

In the second test case, let the character set be  $\{a, b\}$ . The perfect strings are (along with a partition of their indices into pairs):

| aaaa | $\{(1,4),(2,3)\}$ |
|------|-------------------|
| aabb | $\{(1,2),(3,4)\}$ |
| abba | $\{(1,4),(2,3)\}$ |
| baab | $\{(1,4),(2,3)\}$ |
| bbaa | $\{(1,2),(3,4)\}$ |
| bbbb | $\{(1,2),(3,4)\}$ |