

Problem J. Talk That Talk

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Gauri is a big fan of the K-pop group TWICE. Recently, TWICE has released a song called "Talk That Talk", and since then Gauri has been mesmerized by evenly-spaced triplets.

Given an integer t binary string s, where its indices are labelled from 1 to |s|, we define its t-value as the number of TTT-triplets. A triplet (i, j, k) is a TTT-triplet if and only if following conditions are met:

- 1. $1 \le i < j < k \le |s|$
- 2. j i = k j, and $1 \le j i \le t$
- 3. $s_i = s_j = s_k$

Today Gauri received an integer t and a string w of length p-1 as a present, where p is a prime. She noticed that for all $1 \le x \le p-1$, $w_x = 1$ if there exists an integer z such that $z^2 \equiv x \pmod{p}$, and 0 otherwise. Help Gauri compute the t-value of w.

Each test consist of multiple test cases. There are ${\cal T}$ test cases.

Input

The first line consists of an integer T, the number of testcases.

The next T lines consists of 2 integers p and t.

Constraints

- $5 \le p \le 10^{12}$, and p is a prime number.
- $1 \le t \le 10^6$
- $1 \le T \le 5 \cdot 10^5$
- Sum of t among all tests is at most 10^6 .

Output

Output T lines, one for each test case denoting the t-value of w.

Example

standard input	standard output
7	0
7 32	2
13 1	2
13 2	146
67 11	21510
2003 44	495014784
1000003 1984	246913256130162788
999999999999 987654	

Note

When p = 13, we get w = 101100001101, possible TTT-triplets are (5, 6, 7), (6, 7, 8), (2, 5, 8), and (5, 8, 11). Now if t = 2, the latter two triplets have j - i > t, violating condition 2. Thus, the answer for p = 13, t = 2 is 2.