Problem J. Talk That Talk

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Gauri is a big fan of the K-pop group TWICE. Recently, TWICE has released a song called "Talk That Talk", and since then Gauri has been mesmerized by evenly-spaced triplets.
Given an integer t binary string s, where its indices are labelled from 1 to $|s|$, we define its t-value as the number of TTT-triplets. A triplet (i, j, k) is a TTT-triplet if and only if following conditions are met:

1. $1 \leq i<j<k \leq|s|$
2. $j-i=k-j$, and $1 \leq j-i \leq t$
3. $s_{i}=s_{j}=s_{k}$

Today Gauri received an integer t and a string w of length $p-1$ as a present, where p is a prime. She noticed that for all $1 \leq x \leq p-1, w_{x}=1$ if there exists an integer z such that $z^{2} \equiv x(\bmod p)$, and 0 otherwise. Help Gauri compute the t-value of w.
Each test consist of multiple testcases. There are T test cases.

Input

The first line consists of an integer T, the number of testcases.
The next T lines consists of 2 integers p and t.

Constraints

- $5 \leq p \leq 10^{12}$, and p is a prime number.
- $1 \leq t \leq 10^{6}$
- $1 \leq T \leq 5 \cdot 10^{5}$
- Sum of t among all tests is at most 10^{6}.

Output

Output T lines, one for each test case denoting the t-value of w.

Example

standard input	standard output
7	0
732	2
13	1
13	2
6711	2
200344	146
10000031984	21510
999999999989987654	495014784

Note

When $p=13$, we get $w=101100001101$, possible TTT-triplets are $(5,6,7),(6,7,8),(2,5,8)$, and $(5,8,11)$. Now if $t=2$, the latter two triplets have $j-i>t$, violating condition 2 . Thus, the answer for $p=13$, $t=2$ is 2 .

