Problem K. XOR Dice

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

You are given two integers n and d.
Find n dice with faces labelled with nonnegative integers not more than 10^{6} such that:

- for each die, the six numbers written on its faces are all distinct, and
- if you roll all dice, the bitwise XOR of the n numbers on top is always divisible by d.

Under the given constraints, we can prove that such dice always exist.

Input

The only line contains two integers n and $d(1 \leq n \leq 100 ; 2 \leq d \leq 60)$ - the number of dice and the number their XOR has to be divisible by, respectively.

Output

Output n lines, the i-th of which contains six distinct space-separated nonnegative integers at most 10^{6} the faces of the i-th die.

If there are multiple possible answers, output any of them.

Example

standard input		standard output					
3	2	1	3	5	7	9	11
3	5	7	9	11	2023		
0	2	4	6	100000	10		

Note

There are three dice:

- Die 1 has faces $[1,3,5,7,9,11]$.
- Die 2 has faces [3, 5, 7, 9, 11, 2023].
- Die 3 has faces $[0,2,4,6,100000,10]$.

Suppose we rolled the dice, and they landed on 7, 3, and 2. Then their bitwise XOR is $7 \oplus 3 \oplus 2=6$, which is a multiple of 2 .

