Puzzle: Sashigane

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

Given a grid with n rows and n columns, there is exactly one black cell in the grid and all other cells are white. Let (i, j) be the cell on the i-th row and the j-th column, this black cell is located at (b_{i}, b_{j}).
You need to cover all white cells with some L-shapes, so that each white cell is covered by exactly one L-shape and the only black cell is not covered by any L-shape. L-shapes must not exceed the boundary of the grid.
More formally, an L-shape in the grid is uniquely determined by four integers (r, c, h, w), where (r, c) determines the turning point of the L-shape, and h and w determine the direction and lengths of the two arms of the L-shape. The four integers must satisfy $1 \leq r, c \leq n, 1 \leq r+h \leq n, 1 \leq c+w \leq n, h \neq 0$, $w \neq 0$.

- If $h<0$, then all cells (i, c) satisfying $r+h \leq i \leq r$ belong to this L-shape; Otherwise if $h>0$, all cells (i, c) satisfying $r \leq i \leq r+h$ belong to this L-shape.
- If $w<0$, then all cells (r, j) satisfying $c+w \leq j \leq c$ belong to this L-shape; Otherwise if $w>0$, all cells (r, j) satisfying $c \leq j \leq c+w$ belong to this L-shape.

The following image illustrates some L-shapes.

Input

There is only one test case in each test file.
The first line contains three integers n, b_{i} and $b_{j}\left(1 \leq n \leq 10^{3}, 1 \leq b_{i}, b_{j} \leq n\right)$ indicating the size of the grid and the position of the black cell.

Output

If a valid answer exists first output Yes in the first line, then in the second line output an integer k ($0 \leq k \leq \frac{n^{2}-1}{3}$) indicating the number of L-shapes to cover white cells. Then output k lines where the i-th
line contains four integers $r_{i}, c_{i}, h_{i}, w_{i}$ separated by a space indicating that the i-th L-shape is uniquely determined by $\left(r_{i}, c_{i}, h_{i}, w_{i}\right)$. If there are multiple valid answers you can print any of them.
If there is no valid answer, just output No in one line.

Examples

standard input	standard output
534	$\begin{array}{llll} \hline \text { Yes } & & \\ 6 & & & \\ 5 & 1 & -1 & 3 \\ 1 & 2 & 1 & 3 \\ 3 & 1 & -2 & 1 \\ 4 & 3 & -1 & -1 \\ 4 & 5 & 1 & -1 \\ 2 & 5 & 1 & -2 \end{array}$
111	$\begin{aligned} & \text { Yes } \\ & 0 \end{aligned}$

Note

We illustrate the first sample test case as follows.

