Petrozavodsk Winter Training Camp 2017

Day 3: Japanese Contest, Head of Republic of Karelia Cup, Round I, Wednesday, February 1, 2017

Problem F. Election

Input file:	standard input
Output file:	standard output
Time limit:	1.5 seconds
Memory limit:	256 mebibytes

An election was held today. A total of n parties, numbered 1 through n, has participated in this election, and m slots were distributed among the parties based on the number of votes each party got. The following algorithm was used for slot distribution:
Suppose that the parties $1,2, \ldots, n$ got $c_{1}, c_{2}, \ldots, c_{n}$ votes, respectively. Let $s=c_{1}+c_{2}+\ldots+c_{n}$. First, for each $i,\left\lfloor\frac{c_{i}}{s} \cdot m\right\rfloor$ slots are distributed to the party i. Then, the remaining slots are distributed from the parties with the larger value of the fractional part of $\frac{c_{i}}{s} \cdot m$, one slot per party. In case of a tie, the lower-indexed party has the priority.
You have the following information:

- The parties $1,2, \ldots, n$ got exactly $a_{1}, a_{2}, \ldots, a_{n}$ votes, respectively.
- The parties $1,2, \ldots, n$ got at least $b_{1}, b_{2}, \ldots, b_{n}$ slots, respectively.

Compute the minimum possible number of total slots m.

Input

The first line of input contains one integer $n(1 \leq n \leq 100)$. Then n lines follow, each contains a pair of integers a_{i} and $b_{i}\left(1 \leq a_{i} \leq 1000,0 \leq b_{i} \leq 10^{9}\right)$. You may assume that there exists at least one i such that $b_{i} \geq 1$.

Output

Print the minimum possible number of total slots m.

Examples

	standard input	
3		11
1	2	standard output
4	5	
2	3	
4	25	
1	0	
6	5	
4	4	
5	8	42
1	42	

