Trie

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Recall the definition of a trie:

- A trie of size n is a rooted tree with n vertices and $(n-1)$ edges, where each edge is marked with a character.
- Each vertex in a trie represents a string. Let $s(x)$ be the string vertex x represents.
- The root of the trie represents an empty string. Let vertex u be the parent of vertex v, and let c be the character marked on the edge connecting vertex u and v, we have $s(v)=s(u)+c$. Here + indicates string concatenation, not the normal addition operation.
- The string each vertex represents is distinct.

We now present you a rooted tree with $(n+1)$ vertices. The vertices are numbered $0,1, \cdots, n$ and vertex 0 is the root. There are m key vertices in the tree where vertex k_{i} is the i-th key vertex. It's guaranteed that all leaves are key vertices.
Please mark a lower-cased English letter on each edge so that the rooted tree changes into a trie of size $(n+1)$. Let's consider the sequence $A=\left\{s\left(k_{1}\right), s\left(k_{2}\right), \cdots, s\left(k_{m}\right)\right\}$ consisting of all strings represented by the key vertices. Let $B=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ be the string sequence formed by sorting all strings in sequence A from smallest to largest in lexicographic order. Please find a way to mark the edges so that sequence B is minimized.
We say a string $P=p_{1} p_{2} \cdots p_{x}$ of length x is lexicographically smaller than a string $Q=q_{1} q_{2} \cdots q_{y}$ of length y, if

- $x<y$ and for all $1 \leq i \leq x$ we have $p_{i}=q_{i}$, or
- there exists an integer $1 \leq t \leq \min (x, y)$ such that for all $1 \leq i<t$ we have $p_{i}=q_{i}$, and $p_{t}<q_{t}$.

We say a string sequence $F=\left\{f_{1}, f_{2}, \cdots, f_{m}\right\}$ of length m is smaller than a string sequence $G=\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ of length m, if there exists an integer $1 \leq t \leq m$ such that for all $1 \leq i<t$ we have $f_{i}=g_{i}$, and f_{t} is lexicographically smaller than g_{t}.

Input

There are multiple test cases. The first line of th input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and $m\left(1 \leq m \leq n \leq 2 \times 10^{5}\right)$ indicating the number of vertices other than the root and the number of key vertices.

The second line contains n integers $a_{1}, a_{2}, \cdots, a_{n}\left(0 \leq a_{i}<i\right)$ where a_{i} is the parent of vertex i. It's guaranteed that each vertex has at most 26 children.
The third line contains m integers $k_{1}, k_{2}, \cdots, k_{m}\left(1 \leq k_{i} \leq n\right)$ where k_{i} is the i-th key vertex. It's guaranteed that all leaves are key vertices, and all key vertices are distinct.
It's guaranteed that the sum of n of all test cases will not exceed 2×10^{5}.

Output

For each test case output one line containing one answer string $c_{1} c_{2} \cdots c_{n}$ consisting of lower-cased English letters, where c_{i} is the letter marked on the edge between a_{i} and i. If there are multiple answers strings so that sequence B is minimized, output the answer string with the smallest lexicographic order.

Example

			standard input		standard output	
2					abaab	
0	4					
1	1	1	2	2		
1	4	3	5			
1	1					
0						
1						

Note

The answer of the first sample test case is shown as follows.

The string represented by vertex 1 is "a". The string represented by vertex 4 is "aba". The string represented by vertex 3 is "aa". The string represented by vertex 5 is "abb". So $B=\{" a ", " a a ", " a b a ", " a b b "\}$.

