Math Problem

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	1024 megabytes

Given two positive integers n and k, you can perform the following two types of operations any number of times (including zero times):

- Choose an integer x which satisfies $0 \le x < k$, and change n into $k \cdot n + x$. It will cost you a coins to perform this operation once. The integer x you choose each time can be different.
- Change *n* into $\lfloor \frac{n}{k} \rfloor$. It will cost you *b* coins to perform this operation once. Note that $\lfloor \frac{n}{k} \rfloor$ is the largest integer which is less than or equal to $\frac{n}{k}$.

Given a positive integer m, calculate the minimum number of coins needed to change n into a multiple of m. Please note that 0 is a multiple of any positive integer.

Input

There are multiple test cases. The first line of the input contains an integer T $(1 \le T \le 10^5)$ indicating the number of test cases. For each test case:

The first line contains five integers n, k, m, a, b $(1 \le n \le 10^{18}, 1 \le k, m, a, b \le 10^9)$.

Output

For each test case output one line containing one integer, indicating the minimum number of coins needed to change n into a multiple of m. If this goal cannot be achieved, output -1 instead.

Example

standard input	standard output
4	11
101 4 207 3 5	2
8 3 16 100 1	0
114 514 19 19 810	-1
1 1 3 1 1	

Note

For the first sample test case, initially n = 101. The optimal steps are shown as follows:

- Firstly, perform the second type of operation once. Change n into $\lfloor \frac{n}{4} \rfloor = 25$. This step costs 5 coins.
- Then, perform the first type of operation once. Choose x = 3 and change n into $4 \cdot n + 3 = 103$. This step costs 3 coins.
- Then, perform the first type of operation once. Choose x = 2 and change n into $4 \cdot n + 2 = 414$. This step costs 3 coins.
- As $414 = 2 \times 207$, n is a multiple of m. The total cost is 5 + 3 + 3 = 11 coins.

For the second sample test case, perform the second type of operation twice will change n into 0. The total cost is 1 + 1 = 2 coins.

For the third sample test case, as $n = 114 = 6 \times 19$ is already a multiple of m, no operation is needed. The total cost is 0 coins.