Math Problem

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	1024 megabytes

Given two positive integers n and k, you can perform the following two types of operations any number of times (including zero times):

- Choose an integer x which satisfies $0 \leq x<k$, and change n into $k \cdot n+x$. It will cost you a coins to perform this operation once. The integer x you choose each time can be different.
- Change n into $\left\lfloor\frac{n}{k}\right\rfloor$. It will cost you b coins to perform this operation once. Note that $\left\lfloor\frac{n}{k}\right\rfloor$ is the largest integer which is less than or equal to $\frac{n}{k}$.

Given a positive integer m, calculate the minimum number of coins needed to change n into a multiple of m. Please note that 0 is a multiple of any positive integer.

Input

There are multiple test cases. The first line of the input contains an integer $T\left(1 \leq T \leq 10^{5}\right)$ indicating the number of test cases. For each test case:
The first line contains five integers $n, k, m, a, b\left(1 \leq n \leq 10^{18}, 1 \leq k, m, a, b \leq 10^{9}\right)$.

Output

For each test case output one line containing one integer, indicating the minimum number of coins needed to change n into a multiple of m. If this goal cannot be achieved, output -1 instead.

Example

standard input		standard output
4	11	
101420735	2	
$8 \quad 3161001$	0	
$\begin{array}{lllll}114 & 514 & 19 & 19 & 810\end{array}$	-1	
$\begin{array}{lllll}1 & 1 & 3 & 1\end{array}$		

Note

For the first sample test case, initially $n=101$. The optimal steps are shown as follows:

- Firstly, perform the second type of operation once. Change n into $\left\lfloor\frac{n}{4}\right\rfloor=25$. This step costs 5 coins.
- Then, perform the first type of operation once. Choose $x=3$ and change n into $4 \cdot n+3=103$. This step costs 3 coins.
- Then, perform the first type of operation once. Choose $x=2$ and change n into $4 \cdot n+2=414$. This step costs 3 coins.
- As $414=2 \times 207, n$ is a multiple of m. The total cost is $5+3+3=11$ coins.

For the second sample test case, perform the second type of operation twice will change n into 0 . The total cost is $1+1=2$ coins.

For the third sample test case, as $n=114=6 \times 19$ is already a multiple of m, no operation is needed. The total cost is 0 coins.

