Matching

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Given an integer sequence $a_{1}, a_{2}, \cdots, a_{n}$ of length n, we construct an undirected graph G from the sequence. More precisely, for all $1 \leq i<j \leq n$, if $i-j=a_{i}-a_{j}$, there will be an undirected edge in G connecting vertices i and j. The weight of the edge is $\left(a_{i}+a_{j}\right)$.

Find a matching of G so that the sum of weight of all edges in the matching is maximized, and output this maximized sum.

Recall that a matching of an undirected graph means that we choose some edges from the graph such that any two edges have no common vertices. Specifically, not choosing any edge is also a matching.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer $n\left(2 \leq n \leq 10^{5}\right)$ indicating the length of the sequence.
The second line contains n integers $a_{1}, a_{2}, \cdots, a_{n}\left(-10^{9} \leq a_{i} \leq 10^{9}\right)$ indicating the sequence.
It's guaranteed that the sum of n of all test cases will not exceed 5×10^{5}.

Output

For each test case output one line containing one integer indicating the maximum sum of weight of all edges in a matching.

Example

standard input	standard output
3	30
9	0
$\begin{array}{llllllllll}3 & -5 & 5 & 7 & -1 & 9 & 2\end{array}$	0
3	
-5 -4 -3	
3	
110100	

Note

For the first sample test case, the optimal choice is to choose the three edges connecting vertex 3 and 5, vertex 4 and 7 , and finally vertex 8 and 9 . The sum of weight is $(5+7)+(6+9)+(1+2)=30$.
For the second sample test case, as all edges have negative weights, the optimal matching should not choose any edge. The answer is 0 .
For the third sample test case, as there is no edge in the graph, the answer is 0 .

