Problem A. Calandar

On a planet far away from Earth, one year is composed of 12 months, and each month always consists of 30 days.
Also on that planet, there are 5 days in a week, which are Monday, Tuesday, Wednesday, Thursday and Friday. That is to say, if today is Monday, then tomorrow will be Tuesday, the day after tomorrow will be Wednesday. After 3 days it will be Thursday, after 4 days it will be Friday, and after 5 days it will again be Monday.
Today is the d_{1}-th day in the m_{1}-th month of year y_{1}. Given the day of today on that planet, what day will it be (or was it) on the d_{2}-th day in the m_{2}-th month of year y_{2} on that planet?

Input

There are multiple test cases. The first line of the input contains an integer T (about 100), indicating the number of test cases. For each test case:
The first line contains three integers $y_{1}, m_{1}, d_{1}\left(2000 \leq y_{1} \leq 10^{9}, 1 \leq m_{1} \leq 12,1 \leq d_{1} \leq 30\right)$ and a string s, indicating the date and day of today on that planet. It's guaranteed that s is either "Monday", "Tuesday", "Wednesday", "Thursday" or "Friday".
The second line contains three integers y_{2}, m_{2} and $d_{2}\left(2000 \leq y_{2} \leq 10^{9}, 1 \leq m_{2} \leq 12,1 \leq d_{2} \leq 30\right)$, indicating the date whose day we want to know.

Output

For each test case output one line containing one string, indicating the day of the d_{2}-th day in the m_{2}-th month of year y_{2} on that planet.

Example

standard input			
4	standard output		
2019	5		
12	Monday		
2019	5		
14	Wednesday		
2019	5		
12	Tuesday		
2019	12		
20	Friday		
2019	12 Friday		
100000000	1		
100000000	1		
2019	5		
12		Thursday	
:---			

