Day 3: Japanese Contest, Head of Republic of Karelia Cup, Round I, Wednesday, February 1, 2017

Problem H. K-th String

Input file: standard input
Output file: standard output
Time limit: $\quad 1$ second
Memory limit: $\quad 256$ mebibytes
Alice has $n \leq 26$ cards, and each card is labeled with one of the first n lowercase English letters. For example, if $n=3$, Alice has three cards that are labeled "a", " b ", and " c ". Alice constructed a string t by permuting these cards. Furthermore, she considered all non-empty substrings of t and sorted them lexicographically. It turned out that the k-th string in this sorted list of substrings was s. How many t 's are possible?
For example, if $n=3$ and $t=\mathrm{cab}$, the sorted list is $\mathrm{a}, \mathrm{ab}, \mathrm{b}, \mathrm{c}, \mathrm{ca}, \mathrm{cab}$, and the third string in the sorted list is b . When $k=3$ and $s=\mathrm{b}$, there are two possibilites for $t: \mathrm{cab}$ and bac.
Compute the number of possible t 's that are consistent with the given information, modulo $10^{9}+7$. Note that Alice may have made mistakes, in which case the number of possible t 's is zero.

Input

On the first line, you are given two space-separated integers n and k. On the next line, you are given the string $s(1 \leq n \leq 26,1 \leq k \leq n(n+1) / 2)$. The characters in s are pairwise distinct; s consists of the first n lowercase English letters.

Output

Print the answer on a single line.

Examples

	standard input	standard output
2 2	1	
3 3 b l		

