Problem H. K-th String

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Alice has $n \leq 26$ cards, and each card is labeled with one of the first n lowercase English letters. For example, if n = 3, Alice has three cards that are labeled "a", "b", and "c". Alice constructed a string t by permuting these cards. Furthermore, she considered all non-empty substrings of t and sorted them lexicographically. It turned out that the k-th string in this sorted list of substrings was s. How many t's are possible?

For example, if n = 3 and t = cab, the sorted list is a, ab, b, c, ca, cab, and the third string in the sorted list is b. When k = 3 and s = b, there are two possibilities for t: cab and bac.

Compute the number of possible t's that are consistent with the given information, modulo $10^9 + 7$. Note that Alice may have made mistakes, in which case the number of possible t's is zero.

Input

On the first line, you are given two space-separated integers n and k. On the next line, you are given the string s $(1 \le n \le 26, 1 \le k \le n(n+1)/2)$. The characters in s are pairwise distinct; s consists of the first n lowercase English letters.

Output

Print the answer on a single line.

Examples

standard input	standard output
2 2	1
b	
3 3	2
b	