Day 3: Japanese Contest, Head of Republic of Karelia Cup, Round I, Wednesday, February 1, 2017

Problem I. Shortest Path Queries

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

You are given a $W \times H$ grid. Each cell contains an integer. The top-left cell is called (1,1), and the bottom-right cell is called (W, H).
A path from a cell S to a cell T is a sequence of cells such that the first cell in the sequence is S, the last cell in the sequence is T, and any two consecutive cells in the sequence share an edge. The cost of a path is defined as the sum of costs of all cells in the path.
You are given the integers written on the grid, and also Q pairs of cells $\left(S X_{i}, S Y_{i}\right),\left(T X_{i}, T Y_{i}\right)$. For each pair, compute the minimum cost of the path from the cell $\left(S X_{i}, S Y_{i}\right)$ to the cell ($T X_{i}, T Y_{i}$).

Input

On the first line, you are given three integers W, H, and $Q\left(1 \leq W \leq 10,2 \leq H \leq 10^{4}, 1 \leq Q \leq 10^{5}\right)$.
On the next H lines, you are given the information about the grid. The x-th number in the y-th of these lines, $A_{x, y}$, is the integer written in the cell $(x, y)\left(0 \leq A_{x, y} \leq 10^{9}\right)$.
On the next Q lines, you are given pairs of cells $\left(S X_{i}, S Y_{i}\right),\left(T X_{i}, T Y_{i}\right)\left(1 \leq S X_{i}, T X_{i} \leq W\right.$, $\left.1 \leq S Y_{i}, T Y_{i} \leq H,\left(S X_{i}, S Y_{i}\right) \neq\left(T X_{i}, T Y_{i}\right)\right)$.

Output

Print Q lines. On the i-th line, print the answer for the pair ($S X_{i}, S Y_{i}$) and ($T X_{i}, T Y_{i}$).

Examples

		standard input	
2	5	4	
0	1		0
0	1		0
0	0		1
1	0		
1	0		
1	1	2	5
2	1	1	5
1	3	2	3
1	5	1	1

