Problem A. Unrooted Trie

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 256$ megabytes
Recall the definition of a trie:

- A trie of size n is a rooted tree with n vertices and $(n-1)$ edges, where each edge is marked with a character;
- Each vertex in a trie represents a string. Let $s(x)$ be the string vertex x represents;
- The root of the trie represents an empty string. Let vertex u be the parent of vertex v, and let c be the character marked on the edge connecting vertex u and v, we have $s(v)=s(u)+c$. Here + indicates string concatenation, not the normal addition operation.

We say a trie is valid, if the string each vertex represents is distinct.
Given an unrooted tree with n vertices and $(n-1)$ edges, where each edge is marked with a character, how many different vertices can be selected as the root of the tree so that the tree becomes a valid trie?

Input

There are multiple test cases. The first line of the input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$, indicating the size of the tree.
For the following $(n-1)$ lines, the i-th line contains two integers $u_{i}, v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$ and a character c_{i} separated by a space, indicating that there is an edge marked with a character c_{i} connecting vertex u_{i} and v_{i}. It's guaranteed that c_{i} will only be lower-case English letters.

It's guaranteed that the given graph is a tree, and the sum of n of all test cases will not exceed 10^{6}.

Output

For each test case output one line containing one integer, indicating the number of different vertices that can be selected as the root of the tree to make it a valid trie.

Example

	standard input		standard output
2		2	
6		0	
3	1	a	
3	2	a	
3	4	b	
4	5	c	
4	6	d	
6			
3	1	a	
3	2	a	
3	4	b	
5	4	c	
6	4	c	

Note

For the first sample test case, we can only select vertex 1 or vertex 2 as the root, otherwise $s(1)$ and $s(2)$ will be the same.

For the second sample test case, no matter which vertex we select as the root, $s(1)$ and $s(2)$, or $s(5)$ and $s(6)$ will be the same.

