## Neighbourhood

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 10 seconds |
| Memory limit: | 1024 megabytes |

You are given a tree with $n$ vertices. Each edge has a weight $w_{i}$.
There are $q$ operations of the following two types:

- $1 i c$ : Change $w_{i}$ to $c$.
- $2 x d$ : Count number of $y(1 \leq y \leq n)$ such that the shortest path between $x$ and $y$ is not greater than $d$.


## Input

The first line of the input contains two integers $n$ and $q\left(2 \leq n \leq 2 \times 10^{5}, 1 \leq q \leq 2 \times 10^{5}\right)$.
The next $n-1$ lines, each line contains three integers $x_{i}, y_{i}, w_{i}\left(1 \leq x_{i}, y_{i} \leq n, 1 \leq w_{i} \leq 10^{9}\right)$, representing an edge connecting $x_{i}$ and $y_{i}$ with weight $w_{i}$.

The next $q$ lines, each line contains three integers 1 ic $\left(1 \leq i \leq n-1,1 \leq c \leq 10^{9}\right)$ or $2 x d$ ( $1 \leq x \leq n, 0 \leq d \leq 2 \times 10^{14}$ ), indicating an operation.

## Output

For each operation of type 2, print one line with a single integer, indicating the answer.

## Example

|  | standard input |  | standard output |
| :--- | :--- | :--- | :--- |
| 3 | 7 |  | 2 |
| 1 | 2 | 3 | 2 |
| 2 | 3 | 1 | 3 |
| 2 | 2 | 1 | 3 |
| 2 | 1 | 3 | 1 |
| 2 | 3 | 4 | 2 |
| 1 | 1 | 1 |  |
| 2 | 2 | 1 |  |
| 2 | 1 | 0 |  |
| 2 | 3 | 1 |  |

