Cover

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 megabytes

You are given a tree with n vertices and n-1 edges. The degree of each vertex is at most k.

There are m undirected simple paths; the *i*-th path starts at vertex a_i , ends at vertex b_i , and carries a weight of w_i . We say an edge e is covered by a path (x, y) if and only if vertices x and y are disconnected when we remove edge e.

Please find a subset S of these paths such that each edge is covered by S at most once. Your goal is to maximize $\sum_{i \in S} w_i$.

Input

The first line of the input contains three integers n, m, k $(2 \le n \le 10^5, 0 \le m \le 5 \times 10^5, 1 \le k \le 12)$.

The next n-1 lines, each line contains two integers x, y $(1 \le x, y \le n)$, denoting there is an edge connecting vertex x and y in the given tree.

The *i*-th of the next *m* lines contains three integers a_i, b_i, w_i $(1 \le a_i, b_i \le n, 0 \le w_i \le 10^9, a_i \ne b_i)$.

Output

Output a single line contains a single integer, indicating the answer.

Example

standard input	standard output
573	19
1 2	
1 3	
2 4	
2 5	
3 2 8	
5 4 10	
3 1 2	
1 2 7	
2 1 2	
1 2 1	
5 2 3	