Cover

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 megabytes

You are given a tree with n vertices and $n-1$ edges. The degree of each vertex is at most k.
There are m undirected simple paths; the i-th path starts at vertex a_{i}, ends at vertex b_{i}, and carries a weight of w_{i}. We say an edge e is covered by a path (x, y) if and only if vertices x and y are disconnected when we remove edge e.
Please find a subset S of these paths such that each edge is covered by S at most once. Your goal is to $\operatorname{maximize} \sum_{i \in S} w_{i}$.

Input

The first line of the input contains three integers $n, m, k\left(2 \leq n \leq 10^{5}, 0 \leq m \leq 5 \times 10^{5}, 1 \leq k \leq 12\right)$.
The next $n-1$ lines, each line contains two integers $x, y(1 \leq x, y \leq n)$, denoting there is an edge connecting vertex x and y in the given tree.

The i-th of the next m lines contains three integers $a_{i}, b_{i}, w_{i}\left(1 \leq a_{i}, b_{i} \leq n, 0 \leq w_{i} \leq 10^{9}, a_{i} \neq b_{i}\right)$.

Output

Output a single line contains a single integer, indicating the answer.

Example

		standard input		standard output
5	7	3	19	
1	2			
1	3			
2	4			
2	5			
3	2	8		
5	4	10		
3	1	2		
1	2	7		
2	1	2		
1	2	1		
5	2	3		

