Digit

Input file:	standard input
Output file:	standard output
Time limit:	2.5 seconds
Memory limit:	1024 megabytes

Given a positive integer n, in each turn:

1. Uniformly choose a digit d from n (in decimal representation).
2. Update n by setting $n \leftarrow n \cdot(d+1)$.

Calculate the expected number of turns it takes for n to exceed N, modulo 998244353 .

Input

There are multiple test cases in a single test file.
The first line of the input contains a single integer $T(1 \leq T \leq 200)$, indicating the number of the test cases.
For each test case, the first line of the input contains two integers n and $N\left(1 \leq n \leq N \leq 10^{18}\right)$.

Output

For each test case, output a single line contains a single integer, indicating the answer.
It can be proved that the answer always exists.

Example

	standard input	standard output	
3		3	
1	10	100	
1	1000		4

