Medians

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	256 megabytes

Ranran has a permutation p.
He wants to calculate the median of every prefix of p.
The median of n numbers is the $[n / 2\rceil$-th smallest element
For example, the median of $\{1,2,3,4,5,6\}=3$, and the median of $\{1,2,4,8,16\}=4$.
Since the input can be large, the permutation is generated by the following code:
$a_{i}=\left(a_{i-1} * 998244353+10^{9}+7\right) \bmod \left(10^{9}+9\right), p_{i}=i$
then for i from 1 to $n, \operatorname{swap}\left(p_{i}, p_{\left(a_{i} \bmod i\right)+1}\right)$
Now we have permutation p.

Input

First line contains two integers $\mathrm{n}\left(1 \leq n \leq 10^{7}\right)$, and $a_{0}\left(0 \leq a_{0}<10^{9}+9\right)$.

Output

Let $a n s_{i}$ be the answer of prefix $p_{1 \ldots i}$, print $\sum\left(a n s_{i} * 19^{i}\right) \bmod 998244353$.

Examples

standard input	standard output
50	7703113
51	7840977

