Hotpot

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Sichuan hotpot is one of the most famous dishes around the world. People love its spicy taste.
There are n tourists, numbered from 0 to $(n-1)$, sitting around a hotpot. There are k types of ingredients for the hotpot in total and the i-th tourist favors ingredient a_{i} most. Initially, every tourist has a happiness value of 0 and the pot is empty.

The tourists will perform m moves one after another, where the i-th (numbered from 0 to ($m-1$)) move is performed by tourist $(i \bmod n)$. When tourist t moves:

- If ingredient a_{t} exists in the pot, he will eat them all and gain 1 happiness value.
- Otherwise, he will put one unit of ingredient a_{t} into the pot. His happiness value remains unchanged.

Your task is to calculate the happiness value for each tourist after m moves.

Input

There are multiple test cases. The first line of the input contains an integer $T\left(1 \leq T \leq 10^{3}\right)$ indicating the number of test cases. For each test case:
The first line contains three integers n, k and $m\left(1 \leq n \leq 10^{5}, 1 \leq k \leq 10^{5}, 1 \leq m \leq 10^{9}\right)$ indicating the number of tourists, the number of types of ingredients and the number of moves.
The second line contains n integers $a_{0}, a_{1}, \cdots, a_{n-1}\left(1 \leq a_{i} \leq k\right)$ where a_{i} indicates the favorite ingredient of tourist i.

It's guaranteed that neither the sum of n nor the sum of k of all the test cases will exceed 2×10^{5}.

Output

For each test case output n integers $h_{0}, h_{1}, \cdots, h_{n-1}$ in one line separated by a space, where h_{i} indicates the happiness value of tourist i after m moves.
Please, DO NOT output extra spaces at the end of each line, or your answer might be considered incorrect!

Example

		standard input		standard output	
4		0	2	1	
3	2	6	2		
1	1	2	2	2	
1	1	5	0	5	
1					
2	2	10			
1	2				
2	2	10			
1	1				

Note

The first sample test case is explained as follows:

Move	Tourist	Action	Pot after move
0	0	Puts ingredient 1 into the pot	$\{1\}$
1	1	Eats ingredient 1 in the pot	$\}$
2	2	Puts ingredient 2 into the pot	$\{2\}$
3	0	Puts ingredient 1 into the pot	$\{1,2\}$
4	1	Eats ingredient 1 in the pot	$\{2\}$
5	2	Eats ingredient 2 in the pot	$\}$

