Direction Setting

Input file:	standard	input
Output file:	standard	output
Time limit:	1 second	
Memory limit:	256 megał	oytes

Given an undirected graph with n vertices and m edges where the *i*-th vertex has a limit a_i , please assign a direction for each edge so that the graph becomes directed and the following value D is minimized.

$$D = \sum_{i=1}^{n} \max(0, d_i - a_i)$$

where d_i is the in-degree (that is, the number of edges going into that vertex) of the *i*-th vertex.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and m ($2 \le n \le 300$, $1 \le m \le 300$) indicating the number of vertices and edges.

The second line contains n integers a_1, a_2, \dots, a_n $(0 \le a_i \le 10^4)$ where a_i indicates the limit of the *i*-th vertex.

For the following m lines, the *i*-th line contains two integers u_i and v_i $(1 \le u_i, v_i \le n)$ indicating that there is an edge connecting vertex u_i and v_i . Note that there might be self loops or multiple edges.

It's guaranteed that neither the sum of n nor the sum of m of all test cases will exceed 3×10^3 .

Output

For each test case output two lines. The first line contains an integer indicating the smallest possible D. The second line contains a string $s_1s_2\cdots s_m$ of length m consisting only of '0's and '1's indicating a direction assignment plan of the edges to achieve the smallest possible D. If $s_i = 0$ ' then the *i*-th edge is going from u_i into v_i ; Otherwise it's going from v_i into u_i . If there are multiple valid answers you can output any of them.

Example

standard input	standard output
2	2
4 5	01001
0 1 1 5	0
1 2	01
1 3	
2 3	
3 2	
4 4	
3 2	
0 0 2	
1 3	
3 2	

Note

The first sample test case is shown as follows.

