Direction Setting

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Given an undirected graph with n vertices and m edges where the i-th vertex has a limit a_{i}, please assign a direction for each edge so that the graph becomes directed and the following value D is minimized.

$$
D=\sum_{i=1}^{n} \max \left(0, d_{i}-a_{i}\right)
$$

where d_{i} is the in-degree (that is, the number of edges going into that vertex) of the i-th vertex.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and $m(2 \leq n \leq 300,1 \leq m \leq 300)$ indicating the number of vertices and edges.

The second line contains n integers $a_{1}, a_{2}, \cdots, a_{n}\left(0 \leq a_{i} \leq 10^{4}\right)$ where a_{i} indicates the limit of the i-th vertex.

For the following m lines, the i-th line contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$ indicating that there is an edge connecting vertex u_{i} and v_{i}. Note that there might be self loops or multiple edges.
It's guaranteed that neither the sum of n nor the sum of m of all test cases will exceed 3×10^{3}.

Output

For each test case output two lines. The first line contains an integer indicating the smallest possible D. The second line contains a string $s_{1} s_{2} \cdots s_{m}$ of length m consisting only of ' 0 's and ' 1 's indicating a direction assignment plan of the edges to achieve the smallest possible D. If $s_{i}={ }^{\prime} 0$ ' then the i-th edge is going from u_{i} into v_{i}; Otherwise it's going from v_{i} into u_{i}. If there are multiple valid answers you can output any of them.

Example

		standard input		standard output
2			2	
4	5		01001	
0	1	1	5	
1	2		0	
1	3			
2	3			
3	2			
4	4			
3	2			
0	0	2		
1	3			
3	2			

Note

The first sample test case is shown as follows.

$(1) \rightarrow(2) \rightleftarrows$ (3)
 6

