
1	/	6

Asia	Pacific	Informatics	Olympiad	2017
13-14th	May	2017
Australia koala

Language:	en-ISC

Koala	Game
Koala	has	created	a	new	game	and	she	has	challenged	you!	She	begins	by	placing	down	 	items,
numbered	from	 	to	 .	She	then	secretly	assigns	each	item	an	integer	value	between	 	and	
so	that	no	two	items	have	been	assigned	the	same	value .	Item	 	has	been	assigned	the	value	 .
She	has	challenged	you	to	identify	some	properties	of	the	sequence	of	values	

.

To	do	this,	you	will	ask	Koala	to	play	a	series	of	rounds.	In	each	round,	you	are	given	 	blue	stones,
and	Koala	is	given	 	red	stones.	You	go	first	by	placing	some	(or	possibly	all)	of	your	stones	next	to
some	items	of	your	choosing.	Koala,	seeing	your	arrangement,	responds	similarly	by	placing	some	(or
possibly	all)	of	her	stones	next	to	some	of	the	items.	Koala	then	wins	all	items	which	have	strictly
more 	red	stones	than	blue	stones	next	to	them.	Koala	always	distributes	her	stones	so	that	she
maximises	the	sum	of	the	values	of	the	items	that	she	wins.	If	there	are	are	multiple	ways	to	do	this,
she	picks	a	way	which	maximises	the	total	number	of	items	that	she	wins.	If	there	are	still	multiple
ways	to	do	this,	she	picks	any	of	these	ways.

Koala	is	very	lazy	and	will	fall	asleep	if	you	ask	her	to	play	too	many	rounds.	Your	task	is	to	identify
patterns	in	Koala's	sequence	 	by	playing	as	few	rounds	as	possible.

Task
In	this	task,	there	are	four	functions	for	you	to	implement:	minValue,	maxValue,	greaterValue
and	allValues.	Each	function	requires	you	to	identify	a	different	property	of	the	sequence	 .	You
are	strongly	recommended	to	use	the	template	implementation	for	your	language	as	a	starting	point
for	your	solution.	Note	that	even	if	you	are	only	attempting	some	of	the	subtasks,	you	must	still
provide	an	implementation	for	all	four	functions	(though	some	of	these	implementations	may	be
empty).	Your	program	must	not	read	from	standard	input,	write	to	standard	output	or	interact	with	any
files.

In	each	function	the	parameter	N	is	the	number	of	items	in	the	game	and	the	parameter	W	is	the
number	of	stones	both	you	and	Koala	play	with	in	each	round	of	the	game.

minValue(N,	W)	---	This	function	should	return	the	item	number	 	with	the	minimum	value,
that	is,	 .

maxValue(N,	W)	---	This	function	should	return	the	item	number	 	with	the	maximum	value,
that	is,	 .

greaterValue(N,	W)	---	This	function	should	compare	the	value	of	items	 	and	 ,	and	return
the	number	of	the	item	which	is	greater.	Specifically,	it	should	return	0	if	 	and	return	1
otherwise.

allValues(N,	W,	P)	---	This	function	should	determine	the	entire	sequence	 	and	place	it	in
the	provided	array	P:	specifically,	P[i]	should	contain	the	value	 	of	item	 	for	all	

.

2	/	6

In	each	testcase,	the	grader	will	call	precisely	one 	of	these	functions	one	or	more	times .	Each
function	call	is	to	be	treated	as	a	separate	game.	Which	function	is	called	and	the	maximum	number	of
times	it	may	be	called	depends	on	the	subtask	(see	below).	You	may	assume	that	Koala	has	fixed	her
sequence	 	before	each	function	call,	and	it	will	not	change	throughout	the	duration	of	the	function.
She	may	then	change	her	sequence	before	the	next	function	call.

The	implementation	for	each	function	should	call	the	function	playRound	to	gain	information	about
Koala's	sequence.

playRound(B,	R)	---	Ask	Koala	to	play	a	round	with	you.

The	array	B	describes	how	many	blue	stones	you	place	next	to	each	item.	Specifically,	for
all	 ,	B[i]	blue	stones	will	be	placed	next	to	the	item	numbered	 .	Each
B[i]	must	be	a	non-negative	integer	and	the	sum	B[0]	+	B[1]	+	...	+	B[N-1]
must	not	exceed	 .

The	grader	will	fill	the	provided	array	R	to	describe	Koala's	response.	Specifically,	for	all	
,	Koala	will	place	R[i]	red	stones	next	to	the	item	numbered	 .

Each	subtask	specifies	a	hard	limit	on	the	number	of	times	you	may	call	playRound	per
game .	Please	note	that	using	fewer	calls	than	this	limit	may	yield	a	higher	scoring	solution
(see	below).

Sample	Data	[0	points]

There	are	5	"Sample	Data"	testcases.	Each	testcase	calls	one	of	the	4	functions	precisely	once.
See	Examples	below	for	a	detailed	description	of	each	testcase.

.

.

You	may	call	playRound	at	most	3200	times	per	game.

Subtask	1	[4	points]

In	this	subtask,	the	grader	will	only	call	the	function	minValue.	This	function	will	be	called	at
most	100	times	per	testcase.

.

.

You	may	call	playRound	at	most	2	times	per	game.

Subtask	2	[up	to	15	points]

In	this	subtask,	the	grader	will	only	call	the	function	maxValue.	This	function	will	be	called	at
most	100	times	per	testcase.

.

.

You	may	call	playRound	at	most	13	times	per	game.

3	/	6

The	score	for	a	testcase	in	this	subtask	depends	on	the	maximum	number	of	times	 	that
playRound	is	called	among	all	games	in	that	testcase.	Precisely	your	score	will	be:

15	points	if	 ;

7	points	if	 .

Subtask	3	[up	to	18	points]

In	this	subtask,	the	grader	will	only	call	the	function	greaterValue.	This	function	will	be	called
at	most	1100	times	per	testcase.

.

.

You	may	call	playRound	at	most	14	times	per	game.

The	score	for	a	testcase	in	this	subtask	depends	on	the	maximum	number	of	times	 	that
playRound	is	called	among	all	games	in	that	testcase.	Precisely	your	score	will	be:

18	points	if	 ;

14	points	if	 ;

11	points	if	 ;

5	points	if	 .

Subtask	4	[10	points]

In	this	subtask,	the	grader	will	only	call	the	function	allValues.	This	function	will	be	called
exactly	once 	per	testcase.

.

.

You	may	call	playRound	at	most	700	times.

Subtask	5	[up	to	53	points]

In	this	subtask,	the	grader	will	only	call	the	function	allValues.	This	function	will	be	called
exactly	once 	per	testcase.

.

.

You	may	call	playRound	at	most	3200	times.

The	score	for	a	testcase	in	this	subtask	depends	on	the	number	of	times	 	that	playRound	is
called.	Precisely	your	score	will	be:

53	points	if	 ;

	points	if	 ,	where	 	is	the	greatest	integer
less	than	or	equal	to	 .	In	particular,	if	 	your	solution	will	score	13	points.

4	/	6

Scoring

In	each	testcase,	your	program	must	always	run	within	the	time	and	memory	limits	for	this	task.
This	includes	the	time	and	memory	consumed	by	the	grader	when	setting	up,	tearing
down	and	responding	to	calls	to	the	function	playRound.	When	estimating	this	overhead	you
may	assume	that	the	grader	used	in	judging	has	identical	functionality	and	similar
implementation	to	the	sample	grader	provided.

If	playRound	is	called	with	an	invalid	array	B,	or	the	number	of	calls	to	playRound	exceeds
the	hard	limit	for	any	game	within	a	testcase,	the	entire	testcase	will	be	marked	as	Not
Correct,	scoring	0.

If	a	function	does	not	correctly	determine	the	required	properties	of	Koala's	sequence	 	for	a
particular	game	within	a	testcase,	the	entire	testcase	will	be	marked	as	Not	Correct,	scoring
0.

Both	Subtask	4	and	Subtask	5	require	you	to	implement	the	function	allValues,	with	different
values	of	 .	You	may	use	this	to	differentiate	the	two	subtasks	in	your	implementation	--	see
the	template	implementation	in	your	language	for	further	details.

You	may	make	a	maximum	of	60	submissions	for	this	task	with	a	minimum	interval	of	2	minutes
between	successive	submissions.

Examples
Consider	the	following	sequence	 .

0 1 2 3 4 5
5 3 2 1 6 4

Below	are	a	series	of	example	calls	made	to	playRound,	and	a	valid	response	by	the	grader	to	each
(note	that	there	may	be	more	than	one	valid	response	for	any	given	call	to	playRound).

Sample	function
call

Possible
grader

response
Explanation

6
playRound([0,
3,	0,	2,	1,
0],	R)

R	=	[1,	1,
1,	0,	2,	1]

You	place	three,	two	and	one	blue	stone(s)	next	to	items	1,
3	and	4,	respectively,	and	no	stones	next	to	items	0,	2	and
5.	In	reply,	Koala	places	a	single	red	stone	next	to	items	0,
1,	2	and	5	and	two	red	stones	next	to	item	4	with	no	red
stones	next	to	item	3.	Thus,	she	wins	items	0,	2,	4	and	5
with	a	total	combined	value	of	 ,	which	is
the	maximum	possible.

6
playRound([1,
2,	3,	1,	2,
0],	R)

Invalid	function
call.	Your
program	is
terminated	and
marked	Not
Correct,
scoring	0	for
this	testcase.

You	have	placed	 	stones,
which	is	invalid.

5	/	6

12
playRound([1,
2,	3,	1,	2,
0],	R)

R	=	[2,	3,
0,	2,	3,	1]

You	do	not	need	to	place	all	 	of	your	blue	stones,	and
Koala	does	not	need	to	place	all	 	of	her	red	stones.

6
playRound([0,
1,	0,	0,	1,
0],	R)

R	=	[1,	0,
1,	1,	2,	1]

If	there	are	multiple	possible	responses	for	Koala	that
maximise	her	total	value,	she	chooses	one	that	maximises
the	total	number	of	items	that	she	wins,	hence	R	=	[1,
2,	0,	0,	2,	1]	is	not	a	valid	response.

Sample	function
call

Possible
grader

response
Explanation

Feedback	for	each	of	the	functions	that	the	grader	calls	below	(exactly	one	per	testcase)	is	provided	in
the	given	order	as	"Sample	Data"	upon	submission.	You	may	call	playRound	at	most	3200	times	in
each	of	these	5	testcases.

# Grader	calls Expected	return
value Explanation

1 minValue(6,	6) 3 ,	so	item	3	has	the	minimum	value.
2 maxValue(6,	6) 4 ,	so	item	4	has	the	maximum	value.

3 greaterValue(6,
6)

0 ,	so	item	0	has	a	greater	value	than
item	1.

4 allValues(6,
12,	P)

None,	P	=	[5,
3,	2,	1,	6,	4]

The	function	allValues	has	no	return	value,	but
instead	places	the	correct	values	in	the	given	array	P.

5 allValues(6,	6,
P)

None,	P	=	[5,
3,	2,	1,	6,	4]

Same	as	the	previous	function	call.

Sample	Grader
The	sample	grader	reads	from	standard	input	in	the	following	format:

line	1:	two	integers	 ;

lines	2	to	 :	each	line	contains	two	integers	 	followed	by	 	integers	
	describing	a	single	game.

The	integer	 	determines	which	function	the	sample	grader	will	call:

Function	called
1 minValue

2 maxValue

3 greaterValue

4 allValues

The	integer	 	determines	how	many	times	the	specified	function	will	be	called.	Each	subsequent	line
describes	a	game	with	Koala's	sequence.

The	sample	grader	will	write	two	lines	to	standard	output	for	each	function	call.	The	first	line	contains

6	/	6

the	number	of	times	playRound	was	called.

If	 ,	the	second	line	contains	the	contents	placed	in	the	array	P	by	your	implementation	of
the	function	allValues;

Otherwise,	if	 	or	 ,	the	second	line	contains	a	single	integer:	the	return	value	of	the
corresponding	function.

For	instance,	the	fourth	testcase	in	"Sample	Data"	(which	calls	allValues	with	 	and	
)	can	be	described	with	the	following	sample	input	file.

4	1
6	12	5	3	2	1	6	4

