Spicy Restaurant

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

There are n hotpot restaurants numbered from 1 to n in Chengdu and the i-th restaurant serves hotpots of a certain spicy value w_i . A higher spicy value indicates a hotter taste, while a lower spicy value is more gentle (still need to be very careful, though).

We can consider these n restaurants as nodes on an undirected graph with m edges. Now we have q tourists who want to give the hotpots a try. Given the current positions of the tourists and the maximum spicy value they can bear, your task is to calculate the shortest distance between a tourist and the closest restaurant he can accept.

In this problem we define the distance of a path as the number of edges in the path.

Input

There is only one test case in each test file.

The first line contains three integers n, m and q ($1 \le n, m \le 10^5, 1 \le q \le 5 \times 10^5$) indicating the number of restaurants, the number of edges and the number of tourists.

The second line contains n integers w_1, w_2, \dots, w_n $(1 \le w_i \le 100)$ where w_i indicates the spicy value of the i-th restaurant.

For the following m lines, the i-th line contains two integers u_i and v_i $(1 \le u_i, v_i \le n, u_i \ne v_i)$ indicating an edge connecting restaurant u_i and v_i .

For the following q lines, the i-th line contains two integers p_i and a_i ($1 \le p_i \le n$, $1 \le a_i \le 100$) indicating that the i-th tourist is currently at restaurant p_i and that the maximum spicy value he can accept is a_i .

Output

Output q lines where the i-th line contains one integer indicating the shortest distance between the i-th tourist and the closest restaurant he can accept. If there is no such restaurant, output '-1' instead.

Example

standard input	standard output
4 4 5	-1
5 4 2 3	2
1 2	1
2 3	1
3 4	0
4 1	
1 1	
1 2	
1 3	
1 4	
1 5	