Spicy Restaurant

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

There are n hotpot restaurants numbered from 1 to n in Chengdu and the i-th restaurant serves hotpots of a certain spicy value w_{i}. A higher spicy value indicates a hotter taste, while a lower spicy value is more gentle (still need to be very careful, though).
We can consider these n restaurants as nodes on an undirected graph with m edges. Now we have q tourists who want to give the hotpots a try. Given the current positions of the tourists and the maximum spicy value they can bear, your task is to calculate the shortest distance between a tourist and the closest restaurant he can accept.

In this problem we define the distance of a path as the number of edges in the path.

Input

There is only one test case in each test file.
The first line contains three integers n, m and $q\left(1 \leq n, m \leq 10^{5}, 1 \leq q \leq 5 \times 10^{5}\right)$ indicating the number of restaurants, the number of edges and the number of tourists.
The second line contains n integers $w_{1}, w_{2}, \cdots, w_{n}\left(1 \leq w_{i} \leq 100\right)$ where w_{i} indicates the spicy value of the i-th restaurant.
For the following m lines, the i-th line contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right)$ indicating an edge connecting restaurant u_{i} and v_{i}.
For the following q lines, the i-th line contains two integers p_{i} and $a_{i}\left(1 \leq p_{i} \leq n, 1 \leq a_{i} \leq 100\right)$ indicating that the i-th tourist is currently at restaurant p_{i} and that the maximum spicy value he can accept is a_{i}.

Output

Output q lines where the i-th line contains one integer indicating the shortest distance between the i-th tourist and the closest restaurant he can accept. If there is no such restaurant, output '- 1 ' instead.

Example

		standard input		standard output
4	4	5	-1	
5	4	2	3	2
1	2		1	
2	3		1	
3	4			
4	1			
1	1			
1	2			
1	3			
1	4			
1	5			

