The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
JOI Open Contest

Cell Automaton

We have a sufficiently large 2-dimensional grid of cells. The grid is paved with square cells from the top to the bottom and from the left to the right.

There is a cell, which is the origin of the coordinates. Let (x, y) denote the cell one arrives at when one moves from the origin to the right direction for the distance of x cells and to the upward direction for the distance of y cells. Here, the left direction for the distance of a cells means the right direction for the distance of $-a$ cells. Similarly, the downward direction for the distance of a cells means the upward direction for the distance of $-a$ cells.

At time 0 , the cells $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{N}, Y_{N}\right)$ are black, and all of the other cells are white.
For $t=0,1,2, \ldots$, the colors of the cells at time $t+1$ are determined by the colors of the cells at time t in the following way.

- If a cell is black at time t, then the cell becomes gray at time $t+1$.
- If a cell is gray at time t, then the cell becomes white at time $t+1$.
- A cell which is white at time t becomes black at time $t+1$ if at least one of the 4 adjacent cells (i.e. the 4 cells which share the edges) is black at time t. Otherwise, it remains white at time $t+1$.

You have Q queries. For the j-th $(1 \leq j \leq Q)$ query, you should answer the number of black cells at time T_{j}.
Write a program which, given the information of the colors of the cells at time 0 and queries, answers the queries.

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N Q \\
& X_{1} Y_{1} \\
& X_{2} Y_{2} \\
& \vdots \\
& X_{N} Y_{N} \\
& T_{1} \\
& T_{2} \\
& \vdots \\
& T_{Q}
\end{aligned}
$$

Output

Write Q lines to the standard output. The j-th line should contain the number of black cells at time T_{j}.

Constraints

- $1 \leq N \leq 100000$.
- $1 \leq Q \leq 500000$.
- $\left|X_{i}\right| \leq 10^{9}(1 \leq i \leq N)$.
- $\left|Y_{i}\right| \leq 10^{9}(1 \leq i \leq N)$.
- $\left(X_{i}, Y_{i}\right) \neq\left(X_{j}, Y_{j}\right)(1 \leq i<j \leq N)$.
- $0 \leq T_{j} \leq 10^{9}(1 \leq j \leq Q)$.
- $T_{j}<T_{j+1}(1 \leq j \leq Q-1)$.
- Given values are all integers.

Subtasks

1. (4 points) $\left|X_{i}\right| \leq 50(1 \leq i \leq N), \quad\left|Y_{i}\right| \leq 50(1 \leq i \leq N), \quad T_{j} \leq 50(1 \leq j \leq Q)$.
2. (12 points) $\left|X_{i}\right| \leq 1000(1 \leq i \leq N),\left|Y_{i}\right| \leq 1000(1 \leq i \leq N), \quad T_{j} \leq 1000(1 \leq j \leq Q)$.
3. (8 points) $X_{i}=Y_{i}(1 \leq i \leq N), \quad Q=1$.
4. (8 points) $X_{i}=Y_{i}(1 \leq i \leq N)$.
5. (17 points) $N \leq 2000, \quad Q=1$.
6. (25 points) $N \leq 2000$.
7. (26 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
2	3
0	2
1	0
0	2
1	12
2	

The following figure shows the colors of the cells at time 0 . Since there are 2 black cells, the answer to the first query is 2 .
 The 22nd Japanese Olympiad in Informatics (JOI 2022/2023) JOI Open Contest

August 5, 2023

The following figure shows the colors of the cells at time 1 . Since there are 8 black cells, the answer to the second query is 8 .
 The 22nd Japanese Olympiad in Informatics (JOI 2022/2023) JOI Open Contest

August 5, 2023

The following figure shows the colors of the cells at time 2 . Since there are 12 black cells, the answer to the third query is 12 .

This sample input satisfies the constraints of Subtasks 1,2,6,7.

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
JOI Open Contest
August 5, 2023

Sample Input 2	Sample Output 2
3	5
0	0
2	2
5	5
0	12
1	21
2	24
3	26
4	

This sample input satisfies the constraints of Subtasks $1,2,4,6,7$.

Sample Input 3	Sample Output 3
410	4
$-3-3$	16
$33^{-4} 4$	32
$4-4$	48
0	56
1	56
2	55
3	56
4	60
5	64
6	
7	
9	

This sample input satisfies the constraints of Subtasks 1, 2, 6, 7 .

