Domino Tiling

Input file:
Output file: standard input
Time limit: $\quad 2$ seconds
Memory limit: $\quad 64$ megabytes

Chiaki has an $n \times m$ rectangular chessboard. She would like to tile this board with dominoes, where a domino is a 2×1 rectangle, such that:

- all the squares of the board are covered but no dominoes overlap or lie partially off the board.
- there must be no points where corners of four different dominoes meet.

The figure below shows some forbidden configurations:

The figure below shows two valid tilings of 4×4 chessboard:

You also need to number the dominoes of chessboard so that no two dominoes have the same number. You can use the number from 1 to $n \times m$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and $m(1 \leq n, m \leq 100)$ - the size of the rectangular chessboard.
It is guaranteed that the sum of $n \times m$ over all test cases does not exceed 2×10^{6}.

Output

For each test case, output a valid chessboard described above. A valid chessboard consists of n lines and each line contains m integers. Each integer in the output should represent the $i d$ of a domino. The grids sharing the same $i d$ belong to the same domino.
If there is no solution, output "Impossible!" (without the quotes) instead.

Example

	standard input	\quad standard output			
3	1	Impossible!			
4	3	1	1		
4	2				
3	4	2			
3	4	5			
6	6	5			
1	1	2	2		
	3	4	4		
5					
	3	6	6		
5	5				
	7	7	8		

