Yet Another Geometry Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
256 megabytes

There is a 2-dimensional plane described as $\{(x, y) \mid 0 \leq x \leq M, 0 \leq y \leq M\}$. We also have another N points $P\left(x_{i}, y_{i}\right)$. Different points may share the same coordinates.
We define a good space as a square(in the given plane) with no point strictly inside it. Endpoints of the square should be on integers coordinates.

In each query, given (u, v), please calculate the largest area of a good space which (u, v) is strictly inside.
Notice that the border of a legal space has to be parallel to x -axis or y -axis and it should not cross the border of the plane.

Input

There are multiple test cases. The first line of the input contains an integer $T(T \leq 10)$, indicating the number of test cases. For each test case:
The first line contains two integers $M\left(2 \leq M \leq 10^{9}\right)$ and $N(0 \leq N \leq 5000)$.
In the following N lines, each line contains two integers $X_{i}, Y_{i}\left(0 \leq X_{i}, Y_{i} \leq M\right)$, which denotes the Euclidean coordinate of $P\left(x_{i}, y_{i}\right)$.
Then the next line contains one integer $Q(1 \leq Q \leq 5000)$, which denotes the number of queries.
In the following Q lines, each line contains two integers $u, v(0 \leq u, v \leq M)$.

Output

For each query, please output an integer as the answer in one line.
Specially, if there is no legal good space, please output 0 instead.

Example

	standard input		standard output
1		4	
5	5	9	
1	4		4
2	1		
3	2		
4	1		
4	4		
3			
3	1		
2	3	3	

