A Math Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

There are n fans $F_{i}(i=1, \cdots, n)$ and m teams $T_{j}(j=1, \cdots, m)$.
(i) For any fan F_{i}, F_{i} is a fan of at least one team but not a fan of all teams.
(ii) For any two teams $T_{i}, T_{j}(1 \leq i, j \leq m)$, there exists exactly one team $T_{k}(1 \leq k \leq m)$ exactly having the fans both T_{i} and T_{j} have. Note that i, j, k can be the same.
(iii) For any two teams $T_{i}, T_{j}(1 \leq i, j \leq m)$, there exists exactly one team $T_{k}(1 \leq k \leq m)$ exactly having the fans either T_{i} or T_{j} have. Note that i, j, k can be the same.

Please calculate that How many kinds of correspondences between the fans and the teams.

Input

There are multiple test cases. The first line of the input contains an integer $T(T \leq 100000)$, indicating the number of test cases. For each test case:

The first and only line contains two integers $n, m\left(1 \leq n \leq 10^{18}, 2 \leq m \leq 6\right)$.

Output

For each test case, output a integer representing the answer modulo $1000000007\left(10^{9}+7\right)$ in one line.

Example

	standard input	standard output	
9	2	2	
2	3	12	
3	3	36	
3	4	216	
4	4	1032	
4	5	7200	
5	5	46800	
5	6	453600	
6	6	3369600	

