A Math Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

There are n fans $F_i(i = 1, \dots, n)$ and m teams $T_j(j = 1, \dots, m)$.

(i) For any fan F_i , F_i is a fan of at least one team but not a fan of all teams.

(ii) For any two teams $T_i, T_j (1 \le i, j \le m)$, there exists exactly one team $T_k (1 \le k \le m)$ exactly having the fans both T_i and T_j have. Note that i, j, k can be the same.

(iii) For any two teams $T_i, T_j (1 \le i, j \le m)$, there exists exactly one team $T_k (1 \le k \le m)$ exactly having the fans either T_i or T_j have. Note that i, j, k can be the same.

Please calculate that How many kinds of correspondences between the fans and the teams.

Input

There are multiple test cases. The first line of the input contains an integer $T(T \le 100000)$, indicating the number of test cases. For each test case:

The first and only line contains two integers $n, m(1 \le n \le 10^{18}, 2 \le m \le 6)$.

Output

For each test case, output a integer representing the answer modulo $100000007(10^9 + 7)$ in one line.

Example

standard input	standard output
9	2
2 2	12
2 3	36
3 3	216
3 4	1032
4 4	7200
4 5	46800
5 5	453600
5 6	3369600
6 6	