
Code With No Forces
Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: 512 megabytes

Preparing a reliable programming contest is tricky work. Sometimes, you can make the test set huge (e.g.,
wrong answer on test 400) instead of guessing how participants will solve the problems. However, huge
test sets could be a critical burden to the poorly implemented contest platforms. If the judging process is
not parallelled well, the flow time of submission is unacceptable, and you will receive countless complaints
about it.

The problem you’ve made contains n test cases, and there are m test solutions written by different testers
that you can believe are the most typical solutions. To avoid long judging processes, you want to prune
the test set by deleting some test cases and reordering the remaining if needed. After that, it’s required
to keep the results of every test solution remain unchanged. Your goal is to keep the least number of tests
at last.

Take the following snapshot from the contest preparing platform, Polygon, as an example.

Test solutions for Last Warning Of Competition Finance Officer, from the 2022 Shanghai Collegiate Programming Contest

The input data (See section Input) is given as the sheet above. For each solution, it will have a result
with its verdict, running time and memory used on each test. The verdicts you should care about include
the following, which are all common verdicts except compile error.

• OK: correct

• WA: wrong answer

• TL: time limit exceeded

• ML: memory limit exceeded

• RE: runtime error

Page 1 of 3

After testing on a specific data set, the result including a representing verdict, a peak running time and
a peak memory used will be returned to the participant. However, participants will not have information
after the first failed test:

• When a solution passes all tests (correct on all test cases), the maximum time and memory will
be shown with the correct verdict.

• Otherwise, the first failed test’s verdict decides the verdict of the solution, and the maximum time
and memory from the first test to the first failed test will be shown.

We can conclude from the above sheet that the verdicts of each solution are shown as follows.

Test Solution Result
aho_tle.cpp time limit exceeded 5000ms/35MB

hash_1e18.cpp correct 3119ms/4MB
hash_1e9.cpp wrong answer 2589ms/4MB
hash_kmp.cpp correct 1809ms/399MB

hash_overflow.cpp wrong answer 390ms/1MB
std.cpp correct 561ms/36MB

To reduce the size of the test set, you can delete some tests, reorder the remaining ones, and make the
results (verdicts, time, memory) of all tester solutions unchanged. Take the above sheet as an example:

• You can keep cases 9, 17, 10, 15, 13, 20, 12 to satisfy the requirement, and it can be shown to be an
optimal solution.

• You can reorder the cases if you like to – 9, 17, 10, 15, 13, 12, 20 is also valid. However, swapping 9
and 17 is not valid since the solution ‘aho_tle.cpp’ will have a smaller memory cost.

You are given a test result sheet. Find an optimal way to reduce the test set so that the number of tests
remaining is minimum.

Note that if a program is not tested on any test case, the status is undefined and not equal to any valid
result, instead of ‘correct 0ms/0MB’ on some online judges.

Input
The first line contains two integers n and m (1 ≤ n ≤ 400, 1 ≤ m ≤ 6), denoting the size of the test set
and the number of tester solutions.

In the following n lines, the i-th line contains m strings separated by spaces, denoting the verdicts of the
m test solutions of the i-th tests. The string is in the format ‘{verdict},{time cost}/{memory cost}’,
where the time cost and memory cost are integers, in milliseconds and megabytes, respectively.

It’s guaranteed that:

• verdict ∈ {OK, WA, TL, ML, RE}.

• 0 ≤ time cost, memory cost ≤ 10 000.

• All results with verdict = TL has an equal maximum value of time cost that is higher than those
with different verdicts.

• All results with verdict = ML has an equal maximum value of memory cost that is higher than
those with different verdicts.

Output
In the first line, print a single integer |S| denoting the minimum size of the test set satisfying the
requirements mentioned above. Note that for a correct answer, 1 ≤ |S| ≤ n must hold.

Page 2 of 3

In the second line, print |S| integers separated by spaces, denoting the indices sequence S of tests that
the new test set you constructed is in such order.

Examples
standard input standard output

2 3
OK,1/1 OK,2/1 OK,2/2
WA,1/1 OK,1/1 TL,1000/1

2
1 2

3 3
OK,1/1 OK,2/1 OK,1/2
OK,3/3 OK,1/2 OK,114/514
WA,999/999 TL,3000/2 ML,999/1024

1
3

5 3
OK,0/0 OK,0/0 OK,0/0
WA,1/0 RE,0/0 OK,0/0
WA,0/0 WA,0/0 WA,0/0
OK,1/0 RE,0/0 OK,0/0
WA,2/2 RE,2/2 WA,2/2

2
4 3

Note
In sample case 3, you can find that the runtime error is reported by test 4 instead of 2 originally, but it’s
fine as long as the verdict is the same. The fifth test case is not useful even with corresponding verdicts
on every solution, because it has a higher memory and time than the final result of each solution.

Page 3 of 3

